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Nonparametric mean and endpoint regression
(Ir)regularity of models

Nonparametric mean regression models

Yi = g(xi ) + εi , 1 ≤ i ≤ n,

εi iid errors with E (εi ) = 0

g “smooth” mean regression function

standard nonparametric regression estimators: local averages

ĝ(x) =
∑
i

w(x − xi )Yi

with w(t)

{
large
small

if |t|
{

small
large

Estimators “optimal” if distribution of εi “regular”.
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Nonparametric mean and endpoint regression
(Ir)regularity of models

Nonparametric mean regression models: Example
εi = ε̃i − E (ε̃i ) where ε̃i have cdf

F (y) = e−|y |
α

, y ≤ 0, α = 4

g(x) = 5
(
x − 1

2

)3
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Nonparametric boundary regression models

Yi = g(xi ) + εi , 1 ≤ i ≤ n,

εi iid errors with right endpoint of support equal 0

g “smooth” regression function, describing right endpoint of support of Yi
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Nonparametric mean and endpoint regression
(Ir)regularity of models

Model with equidistant design

Yi = g
( i

n

)
+ εi , 1 ≤ i ≤ n,

εi iid with cdf F (y) = 1− c |y |α + o
(
|y |α

)
α controls regularity:

α > 2: regular model,
optimal estimators can be constructed from local averages (if error
distribution known);
classical nonparametric rates of convergence

α < 2: irregular model,
estimators based on local extrema yield better rates of convergence

α = 2 critical value separating realm of regular models from irregular models
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Nonparametric mean and endpoint regression
(Ir)regularity of models

(Ir)regularity from EVT point of view

Yi = g
( i

n

)
+ εi , 1 ≤ i ≤ n,

εi iid with cdf F (y) = 1− c |y |α + o
(
|y |α

)
α > 2 α < 2

ML estimator of γ = 1/α
asymptotically normal

ML estimator of γ not as. normal
(1 ≤ α < 2) or not even defined
(α < 1)

extreme quantile estimators based
on EVT approximation outperform
empirical quantiles

extreme quantile est. based on
EVT approx. does not work well;
empirical quantiles converge at
faster rate
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(Ir)regularity in more general experiments

General parametric model with observations

Yi iid with density fϑ, ϑ ∈ Θ ⊂ Rd

w.r.t. some σ-finite measure µ.

Consider
sϑ :=

√
fϑ

as element of Banach space L2(µ).

Model is called regular if ϑ 7→ sϑ differentiable in L2(µ).

Then

ML estimator behaves nicely,

characterization of optimal estimators and tests (in minimax sense or in
sense of convolution theorem) well known.
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Nonparametric mean and endpoint regression
(Ir)regularity of models

(Ir)regularity in location models

Special case:
Yi = ϑ+ εi , 1 ≤ i ≤ n,

εi iid with density f =⇒ Yi iid with density fϑ = f (· − ϑ)

Model regular if f is sufficiently “smooth”

regular models:

normal distribution
Weibull f (y) = α exp(−|y |α+1)1(−∞,0)(y) for α > 2

irregular models:

uniform distribution on [ϑ, 1 + ϑ] (or [0, ϑ] or [−ϑ, ϑ])
Weibull f (y) = α exp(−|y |α+1)1(−∞,0)(y) for α ≤ 2
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Nonparametric mean and endpoint regression
(Ir)regularity of models

Nonparametric endpoint regression models

Yi = g(xi ) + εi , 1 ≤ i ≤ n,

If g smooth, then regression model locally around fixed x similar to location
model.

Heuristically, concept of (ir)regularity carries over.

Hence for

εi iid with cdf F (y) = 1− c |y |α + o
(
|y |α

)
leads to

regular model for α > 2

irregular model for α < 2

Here mainly interested in uniform estimation of g in irregular model
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(Ir)regularity of models

Related literature

Hall, Van Keilegom (2009): minimax rates (under quadratic loss) and
minimax rate optimal estimators of g(x) for fixed x

Müller, Wefelmeyer (2010): similar results if error distribution is symmetric

estimation of g based on iid observations (Xi ,Yi ) with support{
(x , y) ∈ [0, 1]× [0,∞) | y ≤ g(x)

}
:

Härdle, Park, Tsybakov (1995): special case of α = 1, L1-type loss
Hall, Nussbaum, Stern (1997): conditional density with power behavior at
boundary; asymptotics only for x fixed

similar papers in Poisson process model

Huge literature for models with monotone boundary function g (frontier
estimation); problem much easier then.
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Naive estimators
Local linear estimator
The general case

Naive estimator

Assume that regression fct. g belongs to following Hölder class

Hβ,L :=
{

h : [0, 1]→ R | h is s := bβ−c times differentiable,

|h(s)(x)− h(s)(y)| ≤ L|x − y |β−s ∀x , y ∈ [0, 1]
}

Approximate g locally in neighborhood of x by g(x).

Then
Yi ≈ g(x) + εi

for all i ∈ In(x) :=
{

i ∈ {1, . . . , n} | |i/n − x | ≤ hn

}
for suitable hn ↓ 0.

Because εi < 0 but maxi∈In(x) εi → 0 in probability if |In(x)| ∼ 2nhn →∞, define

ĝn(x) := max
i∈In(x)

Yi
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Naive estimators
Local linear estimator
The general case

Naive estimator: uniform asymptotics

ĝn(x) := max
i∈In(x)

Yi with In(x) :=
{

i ∈ {1, . . . , n} | |i/n − x | ≤ hn

}
Theorem
If hn → 0, nhn →∞, then

sup
x∈[hn,1−hn]

|ĝn(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
uniformly for all g ∈ Hβ,L for all fixed β ∈ (0, 1], L > 0.

Bandwidth hn = (n/ log n)−1/(αβ+1) leads to optimal rate (n/ log n)−β/(αβ+1);

faster than usual nonparametric rate n−β/(2β+1)(log n)τ if α < 2
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Naive estimators
Local linear estimator
The general case

Proof

|ĝn(x)− g(x)| =
∣∣∣ max
i∈In(x)

g(i/n) + εi − g(x)
∣∣∣

≤ max
i∈In(x)

|g(i/n)− g(x)|+ min
i∈In(x)

|εi |

= O(hβn ) + min
i∈In(x)

|εi |

uniformly in x . Let kn = b2nhnc − 1, ln = bn/knc ∼ 1/(2hn).

P
{

max
x∈[hn,1−hn]

min
i∈In(x)

|εi | > u
}

≤ P
{

max
1≤j≤n

min
j≤i≤j+kn

|εi | > u
}

≤ P
{

max
0≤l≤ln

Mn,l > u
}

≤ P
{

max
0≤l≤ln,l even

Mn,l > u
}

+ P
{

max
0≤l≤ln,l odd

Mn,l > u
}

with Mn,l := maxlkn<j≤(l+1)kn minj≤i≤j+kn |εi |.
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Naive estimators
Local linear estimator
The general case

Proof (cont.)
Because Mn,l = maxlkn<j≤(l+1)kn minj≤i≤j+kn |εi | are iid for l even

P
{

max
0≤l≤ln,l even

Mn,l > u
}

= 1−
(
P{Mn,0 ≤ u}

)bln/2c+1
,

and likewise for maximum over odd l .
If Mn,0 > u, then consider first j such that minj≤i≤j+kn |εi | > u:

P{Mn,0 > u} = P
{

min
1≤i≤1+kn

|εi | > u
}

+
kn∑
j=2

P
{
|εj−1| ≤ u, min

j≤i≤j+kn
|εi | > u

}
= (1− F|ε|(u))kn+1 + (kn − 1)F|ε|(u)

(
1− F|ε|(u)

)kn+1
.

Combine everything to obtain

P
{

sup
x∈[hn,1−hn]

min
i∈In(x)

|εi | > u
}
≤ 2

(
1−
(

1−(1+knF|ε|(u))(1−F|ε|(u))kn
)bln/2c+1

)
from which the assertion easily follows.
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Naive estimators
Local linear estimator
The general case

Naive estimator

Remark: Proof yields more precise asymptotics (not needed in what follows)

Example: εi with cdf F (y) = e−|y |
α

, y ≤ 0, α = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

Performance not so good where function changes more quickly
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Naive estimators
Local linear estimator
The general case

Local linear approximation

If regression function g belongs to Hβ,L for some β > 1 (i.e. it is smoother), then
it can be locally approximated by linear function g(t) ≈ a0 + a1(t − x) for
|x − t| ≤ hn;

approximation more accurate on same neighborhood of x , resp.
larger neighborhood can be used to obtain same accuracy:

Yi ≈ a0 + a1
( i

n
− x
)

+ εi if
∣∣∣ i

n
− x
∣∣∣ ≤ hn,

where hn can now be chosen larger.

Similar as before this leads to optimization problem to minimize a0 under the
constraints a0 + a1

(
i
n − x

)
> Yi , i.e.

ĝn(x) := min
{

a0 ∈ R | ∃a1 ∈ R s.t. a0 + a1
( i

n
− x
)
> Yi ∀i ∈ In(x)

}
.

Drees, Neumeyer, Selk Extreme value approach to nonparametric regression 17/27
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Naive estimators
Local linear estimator
The general case

Uniform asymptotics of improved estimator

ĝn(x) := min
{

a0 ∈ R | ∃a1 ∈ R s.t. a0 + a1
( i

n
− x
)
> Yi ∀i ∈ In(x)

}
.

Theorem
If hn → 0, nhn →∞, then

sup
x∈[hn,1−hn]

|ĝn(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
uniformly for all g ∈ Hβ,L for all fixed β ∈ (1, 2], L > 0.

Bandwidth hn = (n/ log n)−1/(αβ+1) leads to optimal rate (n/ log n)−β/(αβ+1);

naive estimator yields slower rate (n/ log n)−1/(α+1) (for optimal choice of hn)
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|ĝn(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
uniformly for all g ∈ Hβ,L for all fixed β ∈ (1, 2], L > 0.

Bandwidth hn = (n/ log n)−1/(αβ+1) leads to optimal rate (n/ log n)−β/(αβ+1);

naive estimator yields slower rate (n/ log n)−1/(α+1) (for optimal choice of hn)

Drees, Neumeyer, Selk Extreme value approach to nonparametric regression 18/27



Nonparametric regression models
Regression estimators based on local maxima

Application to analysis of error distribution

Naive estimators
Local linear estimator
The general case

Further improvements for smoother functions
Suppose g ∈ Hβ,L for some β > 2. Let s = bβ−c. Then

g(t) ≈
s∑

j=0

aj(t − x)j

on neighborhood of x . However, for x 6∈ {1/n, 2/n, . . . , 1}
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Naive estimators
Local linear estimator
The general case

New interpretation of naive and local linear estimator
With

Ps :=
{

p polynomial of order s on [x − hn, x + hn] | p(i/n) ≥ Yi ∀ i ∈ In(x)
}

one has

ĝn(x) = ps(x) where ps ∈ Ps minimizes

∫ x+hn

x−hn
p(t) dt

for s = 0 (naive est.) resp. s = 1 (local linear est.)

Reason:
∫ x+hn
x−hn p(t) dt = 2p(x)hn for p ∈ Ps with s ∈ {0, 1}

This interpretation can be easily generalized to higher order polynomials:

ĝn,s(x) = ps(x) with ps = arg min
ps∈Ps

∫ x+hn

x−hn
p(t) dt

Other variant:

ĝ∗n,s(x) = p∗s (x) with p∗s = arg min
p∈Ps

∑
i∈In(x)

p(i/n)
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Naive estimators
Local linear estimator
The general case

Uniform asymptotics of general estimators

ĝn,s(x) = ps(x) with ps = arg min
ps∈Ps

∫ x+hn

x−hn
p(t) dt

ĝ∗n,s(x) = p∗s (x) with p∗s = arg min
p∈Ps

∑
i∈In(x)

p(i/n)

Theorem

Suppose g ∈ Hβ,L for some β ∈ (s, s + 1]. If hn → 0, nhn →∞, then

sup
x∈[hn,1−hn]

|ĝn,s(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
sup

x∈[hn,1−hn]
|ĝ∗n,s(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
uniformly for all g ∈ Hβ,L for all fixed L > 0.

Bandwidth hn = (n/ log n)−1/(αβ+1) leads to optimal rate (n/ log n)−β/(αβ+1)
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|ĝn,s(x)− g(x)| = O(hβn ) + OP

(( | log hn|
nhn

)1/α)
sup

x∈[hn,1−hn]
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Empirical process of residuals

Goal: Analyse distribution of errors (e.g. test for parametric hypotheses)

If errors εi were observable, statistical analysis based on empirical distribution
function

Fn(y) :=
1

n

n∑
i=1

1(−∞,y ](εi ).

Use instead residuals

ε̂i := Yi − ĝn(i/n), nhn ≤ i ≤ n − nhn,

with empirical distribution function

F̂n(y) :=
1

mn

∑
i∈In

1(−∞,y ](ε̂i )

where In :=
{

i ∈ {1, . . . , n} | nhn ≤ i ≤ n − nhn

}
and mn := |In| ∼ n.
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Empirical process of residuals: asymptotics

F̂n(y) :=
1

mn

∑
i∈In

1(−∞,y ](ε̂i ), F̃n(y) :=
1

mn

∑
i∈In

1(−∞,y ](εi ).

Theorem

If maxi∈In |ĝn(i/n)− g(i/n)| = OP

(
n−β/(αβ+1)(log n)τ

)
for some τ < 0 and F is

Hölder continuous of order α ∧ 1, then

sup
y∈R

∣∣F̂n(y)− F̃n(y)
∣∣ = oP

(
n−1/2

)
.

if 1/β < α < 2− 1/β. In particular,

√
n(F̂n − F ) −→ B ◦ F

weakly in D(R) for a Brownian bridge B.
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Proof
Conditions on α ensure that an := n−β/(αβ+1)+ε = o

(
n−1/(2(α∧1))

)
for sufficiently

small ε < 0. By the assumption on ĝn

F̂n(y) =
1

mn

∑
i∈In

1(−∞,y ](ε̂i ) =
1

mn

∑
i∈In

1(−∞,y ]
(
εi + g(i/n)︸ ︷︷ ︸

=Yi

−ĝn(i/n)
)

≤ 1

mn

∑
i∈In

1(−∞,y ]
(
εi − an

)
= F̃ (y + an)

with probability tending to 1. Now

sup
y∈R

(F (y + an)− F (y)) = O
(
aα∧1n

)
= o(n−1/2).

and
En :=

√
n(F̃n − F )→ B ◦ F

where the limit has continuous sample paths. Hence, uniformly for all y ∈ R,
√

n(F̂n(y)− F̃ (y)) ≤
√

n(F̃n(y + an)− F̃ (y))

= En(y + an)− En(y) +
√

n(F (y + an)− F (y)) = op(1).
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Proof (cont.)

Likewise,

√
n(F̂n(y)− F̃ (y)) ≥ En(y − an)− En(y) +

√
n(F (y − an)− F (y)) = op(1),

which concludes the proof.
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Further results and open problems

Working group at HU Berlin: established estimators which adapt to unknown
smoothness and attain pointwise minimax rates.

Open problems to be considered next in working group at Hamburg University:

More precise analysis of estimation error to obtain similar results for
empirical process of residuals under weaker conditions on α

Analysis of tail empirical process of residuals

Testing model assumptions on behavior of F at 0
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Thank you for your attention!
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