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Vimeiro — 1983
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Oberwolfach — 1987
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But, let’s go into Science . . .
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We are both “extremists”, and my main scientific connections with

ROSS are related to:

• Dependence conditions. My 1st Ph.D. student had Ross has

a mentor, and has even stayed for a while in North Carolina, in

the late eighties. And I had several Ph.D. students who worked

and still work deeply in this area . . . where Ross is a King.

• Extremal index. When I was a Ph.D. student at Sheffield, I

have enthusiastically read Ross’ 1973 paper entitled “On ex-

treme values in stationary sequences” [ZWT], and I got very

much interested in the theme, despite of having worked only

sporadically in it.

This was the main reason for the choice of the topic of this presen-

tation, where I give some emphasis on the use of the jackknife in

the estimation of the extremal index.
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1. OUTLINE

• Resampling methodologies have recently revealed to be very

fruitful in the field of statistics of extremes.

• We mention the importance of

– the Generalized Jackknife and

– the Bootstrap

in the obtention of a reliable semi-parametric estimate of any

parameter of extreme or even rare events, like a high quantile,

the expected shortfall, the return period of a high level or the

two primary parameters of extreme events, the extreme value

index (EVI) and the extremal index (EI).

• In order to illustrate such topics, we shall consider minimum-

variance reduced-bias (MVRB) estimators of a positive EVI and

a jackknife Leadbetter-Nandagopalan EI-estimator.

7



2. EXTREME VALUE THEORY (EVT) – A
BRIEF INTRODUCTION

2.1. The extreme value index (EVI)

• We use the notation γ for the EVI, the shape parameter in the

Extreme Value d.f.,

EVγ(x) =

{
exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ 6= 0
exp(− exp(−x), x ∈ R if γ = 0,

and we now consider models with a heavy right-tail, i.e.

F := 1− F ∈ RV−1/γ, for some γ > 0,

where the notation RVα stands for the class of regularly-varying

functions with an index α ∈ R, i.e., positive measurable functions

g(·) such that ∀x > 0, g(tx)/g(t)→ xα, as t→∞.
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2.2. The extremal index (EI)

• The EI is a parameter of extreme events related to the clustering

of exceedances of high thresholds, a situation that occurs for

stationary sequences [Leadbetter (1973), ZWT].

• We thus assume to be working with a strictly stationary se-

quence of r.v.’s, {Xn}n≥1, from F , under the long range depen-

dence condition D [Leadbetter, Lindgren & Rootzén, 1983] and the

local dependence condition D” [Leadbetter & Nandagopalan, 1989],

straightforwardly true for i.i.d. data.

Definition 1. The stationary sequence {Xn}n≥1 is said to have

an extremal index θ (0 < θ ≤ 1) if, for all τ > 0, we can find a

sequence of levels un = un(τ) such that, with {Yn}n≥1 the asso-

ciated i.i.d. sequence (i.e., an i.i.d. sequence from the same F ),

P (Yn:n ≤ un) = Fn(un) −→
n→∞ e−τ and P (Xn:n ≤ un) −→

n→∞ e−θτ .
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• For dependent sequences there can thus appear a “shrinkage”

of maximum values, but the limiting d.f. of Xn:n, linearly nor-

malized, is still an Extreme Value d.f., EVγ.

• Following Leadbetter (1983), ZWT, the extremal index can also be

defined as:

θ =
1

limiting mean size of clusters

= lim
n→∞P (X2 ≤ un|X1 > un) = lim

n→∞P (X1 ≤ un|X2 > un),

un : F (un) = 1− τ/n+ o(1/n), as n→∞, with τ > 0, fixed.
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• The ARMAX processes, will be the ones used here for illustra-

tion. Such processes are based on an i.i.d. sequence of innova-

tions {Zi}i≥1, with d.f. H, and are defined through the relation,

Xi = βmax(Xi−1, Zi), i ≥ 1, 0 < β < 1.

• The ARMAX sequence has a stationary distribution F , depen-

dent on H through the relation F (βx)/F (x) = H(x) [Alpuim, 1989,

JAP].

• Conditions D e D” hold for these sequences and stationary

ARMAX sequences may possess an extremal index θ < 1.

• For illustration, we shall consider ARMAX processes with

Fréchet innovations. If H(x) = Φβ−1/γ−1
γ (x), F (x) = Φγ(x) =

exp
(
−x−1/γ

)
, x ≥ 0, and θ = 1− β1/γ.

11



0

10

20

30

0 10 20 30 40 50
0

10

20

30

0 10 20 30 40 50
0

10

20

30

0 10 20 30 40 50

! = 0 8. ! = 0 5. ! = 0 2.

Notice the the richness of these processes, regarding clustering of

exceedances. Note also that there is a “shrinkage” of maximum

values, together with the exhibition of larger and larger “clusters”

of exceedances of high values, as θ decreases.
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2.3. First, second and third-order frameworks

• If F ∈ RV−1/γ, γ > 0, then [Gnedenko, 1943, AM], F is in the domain

of attraction for maxima of a Fréchet-type Extreme Value d.f.,

and we write

F ∈ DM(EVγ>0) =: DM+.

• In this same context of heavy right-tails, and with the notation

U(t) = F←(1− 1/t), t ≥ 1,

with F←(y) = inf{x : F (x) ≥ y} the generalized inverse function

of the underlying model F , we can further say that

F ∈ DM+ ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ,

the so-called first-order conditions.
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• For consistent semi-parametric EVI-estimation, in the whole

D+
M, we merely need to assume the validity of the first-order

condition, U ∈ RVγ, and to work with adequate functionals, de-

pendent on an intermediate tuning parameter k, the number of

top o.s.’s involved in the estimation. This means that k needs

to be such that

k = kn →∞ and kn = o(n), as n→∞.

• To obtain information on the non-degenerate asymptotic be-

haviour of semi-parametric EVI-estimators, we need further as-

suming a second-order condition, ruling the rate of convergence

in the first-order condition. The second-order parameter, ρ

(≤ 0), rules such a rate of convergence, and it is the param-

eter appearing in the limiting result,
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lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=
xρ − 1

ρ
,

which we often assume to hold for every x > 0, and where |A|
must be in RVρ [Geluk and de Haan, 1987]. For technical simplicity,

we usually further assume that ρ < 0, writing A(t) =: γβtρ.

• In order to obtain full information on the asymptotic bias of any

corrected-bias EVI-estimator, it is usual to consider a Pareto

third-order condition, i.e., a Pareto-type class of models, with a

tail function

1− F (x) = Cx−1/γ
(
1 +D1x

ρ/γ +D2x
2ρ/γ + o

(
x2ρ/γ

))
,

as x→∞, with C > 0, D1, D2 6= 0, ρ < 0.
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3. EVI and EI-ESTIMATORS

3.1. Classical EVI-estimators

• For models in D+
M, the classical EVI-estimators are the Hill es-

timators [Hill, 1975, AS], averages of the log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n,

i.e.,

Hn(k) ≡ H(k) := 1
k

k∑
i=1

Vik, 1 ≤ k < n.

• But these EVI-estimators have often a strong asymptotic bias

for moderate up to large values of k, of the order of A(n/k),

and the adequate accommodation of this bias has recently been

extensively addressed.
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3.2. Second-order reduced-bias (SORB) EVI-estimators

• We mention the pioneering papers by Peng (1998) [SN], Beirlant,

Dierckx, Goegebeur and Matthys (1999) [Extremes], Feuerverger and Hall

(1999) [AS], and Gomes, Martins and Neves (2000) [Extremes], among

others.

• In these papers, authors are led to SORB EVI-estimators, with

asymptotic variances larger than or equal to (γ (1− ρ)/ρ)2,

where ρ(< 0) is the aforementioned “shape” second-order pa-

rameter, ruling the rate of convergence of the normalized se-

quence of maximum values towards the limiting law EVγ.
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3.3. MVRB EVI-estimators

• Later on, Caeiro, Gomes & Pestana (2005) [Revstat], Gomes, Martins

& Neves (2007) [Revstat] and Gomes, de Haan and Henriques-Rodrigues

(2008) [JRSS] have been able to reduce the bias without increasing

the asymptotic variance, kept at γ2.

• Those estimators, called minimum-variance reduced-bias

(MVRB) EVI-estimators, are all based on an adequate “exter-

nal” consistent estimation of the pair of second-order parame-

ters, (β, ρ) ∈ (R,R−), done through estimators denoted (β̂, ρ̂),

and outperform the classical estimators for all k.

• We now consider the simplest class of MVRB EVI-estimators:

H(k) ≡ H β̂,ρ̂(k) := H(k)
(

1− β̂ (n/k)ρ̂ /(1− ρ̂)
)
.
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3.4. Asymptotic comparison of classical and MVRB EVI-

estimators

• The Hill estimator reveals usually a high asymptotic bias. In-

deed, it follows from the results of de Haan & Peng (1998) that

under the general second-order condition,

√
k (H(k)− γ)

d
= Normal0,γ2 + bH

√
kA(n/k) + op(

√
kA(n/k)),

where the bias bH
√
kA(n/k) = γ β

√
k (n/k)ρ/(1−ρ) can be very

large, moderate or small (i.e. go to ∞, constant or 0) as n→∞.

• This non-null asymptotic bias, together with a rate of conver-

gence of the order of 1/
√
k, leads to sample paths with a high

variance for small k, a high bias for large k, and a very sharp

MSE pattern, as a function of k.
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• Under the same conditions as before,
√
k
(
H(k)− γ

)
is asymp-

totically normal with variance also equal to γ2 but with a null

mean value. Indeed, under the validity of the aforementioned

third-order condition related to Pareto-type class of models, we

can then adequately estimate the vector of second-order param-

eters, (β, ρ), and write [Caeiro, Gomes & Henriques-Rodrigues, 2009,

CSTM]

√
k
(
H(k)− γ

) d
= Normal0,γ2 + b

H

√
kA2(n/k) + op(

√
kA2(n/k)).

• Consequently, H(k) outperforms H(k) for all k.

20



3.5. Classical EI-estimators

• Given a sample (X1, X2, . . . , Xn) and chosen a suitable thresh-

old u, with IA the indicator function of A, a possible estimator of θ

[Leadbetter and Nandagopalan, 1989] is given by

θ̂Nn = θ̂Nn (u) :=

n−1∑
j=1

I[Xj>u,Xj+1≤u]

n∑
j=1

I[Xj>u]

=

n−1∑
j=1

I[Xj≤u<Xj+1]

n∑
j=1

I[Xj>u]

.

• To have consistency, the high level u must be: n(1− F (un)) =

cnτ = τn, τn →∞ and τn/n→ 0 [Nandagopalan, 1990].
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• To make the semi-parametric EI-estimation closer to the semi-

parametric EVI-estimation, we consider [Gomes, Hall & Miranda,

2008, CSDA] u ∈
[
Xn−k:n, Xn−k+1:n

)
and the estimator

θ̂Nn (k) ≡ θNn (u) :=
1

k

n−1∑
j=1

I[Xj≤Xn−k:n<Xj+1].

Bias assumption on the data structures.

• For independent, identically distributed data (θ = 1):

E[θ̂Nn (k)] = 1 +
(

1

2 k
−
k

n

)
(1 + o(1)).

• Moreover, for ARMAX processes, we get

E
[
θ̂Nn (k)

]
= θ −

(
θ(θ + 1)

2

(
k

n

)
−

3− 2 θ

2 k

)
(1 + o(1)) .
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• We shall thus consider the EI-estimator as a function of k, the

number of o.s.’s higher than the chosen threshold. We further

assume that, as n→∞, and for intermediate k,

Bias
[
θ̂Nn (k)

]
= ϕ1(θ)

(
k

n

)
+ ϕ2(θ)

(
1

k

)
+ o

(
1

k

)
+ o

(
k

n

)
.

• In the semi-parametric EI-estimation we have thus to cope with

problems similar to the ones appearing in the EVI-estimation:

increasing bias, as the threshold decreases and a high variance

for high thresholds.

Is it possible to improve the performance of estimators through the

use of computer intensive methods?
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4. RESAMPLING METHODOLOGIES

• The use of resampling methodologies [Efron, 1979, AS] has re-

vealed to be promising in the estimation of the nuisance pa-

rameter k, and in the reduction of bias of any estimator of a

parameter of extreme events.

• If we ask how to choose the tuning parameter k in the estimation

of a parameter of extreme events, η, through T (k), we usually

consider the estimation of kT0 := arg minkMSE(T (k)).

• To obtain estimates of kT0 one can then use a double-bootstrap

method applied to an adequate auxiliary statistic like A(k) :=

T (k)−T (bk/2c), where bxc stands as usual to the integer part of

x, and which tends to zero and has an asymptotic behaviour sim-

ilar to the one of T (k) (Gomes and Oliveira, 2001, Extremes, among

others). We shall not sketch such a double-bootstrap algorithm.

24



• At such optimal levels, we have a non-null asymptotic bias.

• If we still want to remove such a bias, we can then make use of

the generalized jackknife methodology.

• The main objectives of the Jackknife methodology are:

1. Bias and variance estimation of a certain estimator, only

through manipulation of observed data x.

2. The building of estimators with bias and mean squared error

smaller than those of an initial set of estimators.

• The Jackknife or Generalized Jacknife (GJ) are resampling

methodologies, which usually give a positive answer to the ques-

tion: “May the combination of information improve the quality

of estimators of a certain parameter or functional?” .
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• It is then enough to consider an adequate pair of estimators of

the parameter of extreme events under consideration, possibly

also T (k) and T (bk/2c), and to built a reduced-bias affine com-

bination of them. In Gomes, Martins & Neves, 2000, also among

others, we can find an application of this technique to the Hill

estimator.

• In order to illustrate the use of these methodologies in EVT,

we shall essentially consider, just as performed in Gomes, Martins

& Neves, 2013, CSTM, the aforementioned MVRB EVI-estimators

H(k) in Caeiro et al. (2005), and the classical EI-estimators, as

performed in Gomes, Martins & Neves, 2007.
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4.1. The jackknife methodology and bias reduction

• The pioneering EVI reduced-bias estimators are, in a certain

sense, generalized jackknife (GJ) estimators, i.e., affine combi-

nations of well-known estimators of γ.

• The generalized jackknife statistic was introduced by Gray and

Shucany (1972): Let T (1)
n and T

(2)
n be two biased estimators of γ,

with similar bias properties, i.e.,

Bias(T (i)
n ) = γ + φ(γ)di(n), i = 1,2.

Then, if q = qn = d1(n)/d2(n) 6= 1, the affine combination

TGn :=
(
T

(1)
n − qT (2)

n

)
/(1− q)

is an unbiased estimator of γ.
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4.2. A GJ corrected-bias EVI-estimator

• Given H, the most natural GJ r.v. is the one associated to the

random pair
(
H(k), H(bθkc)

)
, 0 < θ < 1, is

H
GJ(q,θ)(k) := H(k)−q H(bθkc)

1−q , 0 < θ < 1,

with

q = qn = Bias∞[H(k)]
Bias∞[H(bθkc)]

=
A2(n/k)

A2(n/bθkc)
−→

n/k→∞
θ2ρ.

It is thus sensible to consider q = θ2ρ, θ = 1/2, and, with ρ̂ a

consistent estimator of ρ, the GJ estimator,

H
GJ(k) :=

22ρ̂ H(k)−H(bk/2c)
22ρ̂ − 1

.
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• Then, and provided that ρ̂− ρ = op(1),

√
k
(
H
GJ(k)− γ

) d
= Normal0,σ2

GJ
+ op(

√
kA2(n/k)),

with

σ2
GJ

= γ2(1 + 1/(2−2ρ − 1)2.

• We have thus a trade-off between variance and bias . . .

The bias decreases, but the variance increases . . .

But we are able to reach a better performance at optimal levels.
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4.3. A GJ corrected-bias EI-estimator

• Since the bias term of the aforementioned classical EI-estimator

reveals 2 main components of 6= orders, we need to use an affine

combination of 3 EI-estimators and a order-2 GJ-statistic.

• Let X = (X1, . . . , Xn) be a sample from F , and let Tn = Tn(X,F )

be an estimator of a functional θ(F ), or of a parameter θ.

• If the bias of our estimator reveals 2 main terms that we would

like to remove, the GJ methodology advises us to deal with 3

estimators with the same type of bias:

30



Definition 2. Given 3 estimators T (1)
n , T (2)

n and T
(3)
n of θ:

E

[
T

(i)
n − θ

]
= d1(θ) ϕ(i)

1 (n) + d2(θ) ϕ(i)
2 (n), i = 1,2,3,

the GJ statistic (of order 2) is given by

TGJn :=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
T

(1)
n T

(2)
n T

(3)
n

ϕ
(1)

1 ϕ
(2)

1 ϕ
(3)

1

ϕ
(1)

2 ϕ
(2)

2 ϕ
(3)

2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 1 1

ϕ
(1)

1 ϕ
(2)

1 ϕ
(3)

1

ϕ
(1)

2 ϕ
(2)

2 ϕ
(3)

2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ,
with ||A|| denoting, as usual, the determinant of the matrix A.

• Straightforwardly, one may state:

Proposition 1. TGJn is unbiased for the estimation of θ.
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• Moreover, although the variance of TGJn is always larger than

the variance of the original estimators, the MSE of TGJn is often

smaller than that of any of the statistics T (i)
n , i = 1,2,3.

• The information on the bias of the EI-estimator θ̂Nn (k) led us

to consider first the GJ EI-estimator of order 2, based on the

estimator θ̂Nn (k) computed at the three levels, k, bk/2c+ 1 and

bk/4c+ 1 [Gomes and Miranda, 2003]:

θ̂GJn (k) = 5 θ̂Nn (bk/2c+ 1)− 2
(
θ̂Nn (bk/4c+ 1) + θ̂Nn (k)

)
.

• This estimator has very stable sample paths, around the target

value θ, BUT at expenses of a very high variance, which does

not enable it to overpass the original estimator, regarding MSE

at optimal levels.
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• We thus think sensible to consider, more generally, the levels

k, bδkc+ 1 and bδ2kc+ 1, dependent of a tuning parameter δ,

0 < δ < 1, and the class of estimators,

θ̂
GJ(δ)
n (k) :=

(δ2 + 1) θ̂Nn (bδkc+ 1)− δ
(
θ̂Nn

(
bδ2kc+ 1

)
+ θ̂Nn (k)

)
(1− δ)2

.

• Note that θ̂GJn (k) ≡ θ̂GJ(1/2)
n (k).

• For a stationary Fréchet(1) ARMAX sample of size n = 5000,

with θ = 0.5, we next present

– sample paths of θ̂Nn (k) and θ̂GJn (k) (left), and

– the expected values of such an estimator, associated to δ =

0.1, 0.2, 0.4 e 0.5(right).
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• Note the reasonably high stability around the target value

θ = 0.5, of the sample path and mean value of the GJ EI-

estimator for a wide range of k-values, comparatively to that of

Nandagopalan’s estimator.
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Remark 1. The mean value stability around the target value θ,

for a wide range of k-levels, is true for all θ and for all simulated

models.

But the GJ-estimator, θ̂GJn , may not overpass, for n = 1000

(and small θ), the original estimator, θ̂Nn , regarding MSE

at optimal levels. Extra investment is thus needed on the

“optimal” choice of the 3 levels to be used in the building of a

GJ extremal index estimator or on the use of extra resampling

or sub-sampling techniques, as performed in Gomes, Hall &

Miranda (2008), who have used simple subsampling techniques, in

order to attain a smaller mean squared error (MSE) at optimal

levels.
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5. A CASE STUDY

5.1. The GJ EVI-estimation applied to insurance data

We consider an illustration of the performance of the EVI-estimates

under study, through the analysis of automobile claim amounts ex-

ceeding 1,200,000 Euro over the period 1988-2001, gathered from

several European insurance companies co-operating with the same

re-insurer (Secura Belgian Re). This data set was already studied

in Beirlant, Goegebeur, Segers & Teugels (2004), WILEY, Vandewalle and Beir-

lant (2006), IME and Beirlant, Figueiredo, Gomes & Vandewalle (2008), JSPI,

as an example to excess-of-loss reinsurance rating and heavy-tailed

distributions in car insurance.
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• Regarding the EVI-estimation, note that whereas the Hill esti-

mator is unbiased for the estimation of γ when the underlying

model is a strict Pareto model, it always exhibits a relevant bias

when we have only Pareto-like tails, as happens here.

• The corrected-bias estimators, which are “asymptotically unbi-

ased”, have a smaller bias, exhibit more stable sample paths

as functions of k, and enable us to take a decision upon the

estimate of γ to be used, even with the help of any heuristic

stability criterion, like the “largest run” suggested in Gomes and

Figueiredo (2006), Test.

• For the Hill estimator, as we know how to estimate β and ρ, and

we have simple techniques to estimate the OSF. Indeed, we get

k̂H0 =
(
(1− ρ̂)2n−2ρ̂/

(
− 2 ρ̂ β̂2

))1/(1−2ρ̂)
= 58.
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• The aforementioned bootstrap algorithm, not detailed here,

helps us to provide an adaptive choice for corrected-bias EVI-

estimators.

• We have got k̂0|H = 56, k̂
0|H

= 158, k̂
0|HGJ

= 261, and the

EVI-estimates

H∗ = 0.286, H
∗ = 0.240 and H

GJ∗ = 0.236,

the values pictured in the following Figure.

Remark 2. Note that bootstrap confidence intervals as well as

asymptotic confidence intervals are easily associated with the esti-

mates presented, the smallest size (with a high coverage probability)

being related with H
GJ∗.
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6. SOME OVERALL CONCLUSIONS

1. The most attractive features of the GJ estimators are their sta-

ble sample paths (for a wide region of k values), close to the

target value, and the “bath-tube” MSE patterns.

The insensitivity of the mean value (and sample path) to

changes in k is indeed the nicest feature of these GJ-estimators.

2. Regarding MSE at optimal levels, the simplest GJ EI-estimator

does not overpass the original one. To obtain relative efficien-

cies greater than 1, we had to proceed to a 6= choice of the

3 levels under play. Even with such a choice, and for θ small,

such an objective is often attained only with the extra use of a

subsampling algorithm. Further investment is thus welcome.
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THAT’s ALL and THANKS . . .
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To Ross: a photo of Lisbon, we both love, as another token of

friendship.
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