Resampling Methodologies and Reliable Tail Estimation

M. Ivette Gomes

Universidade de Lisboa, Portugal

Research partially supported by National Funds through **FCT** — Fundação para a Ciência e a Tecnologia, projects PEst-OE/MAT/UI0006/2011 and EXTREMA, PTDC/MAT/101736/2008.

To ROSS, as a first token of friendship: a photo of *Liseberg*Amusement Park—Gothenburg, Sweden, we both visited in 2005.

Vimeiro — 1983

Oberwolfach — 1987

But, let's go into Science ...

We are both "extremists", and my main scientific connections with ROSS are related to:

- Dependence conditions. My 1st Ph.D. student had Ross has a mentor, and has even stayed for a while in North Carolina, in the late eighties. And I had several Ph.D. students who worked and still work deeply in this area . . . where Ross is a King.
- Extremal index. When I was a Ph.D. student at Sheffield, I have enthusiastically read Ross' 1973 paper entitled "On extreme values in stationary sequences" [ZWT], and I got very much interested in the theme, despite of having worked only sporadically in it.

This was the main reason for the choice of the topic of this presentation, where I give some emphasis on the use of the jackknife in the estimation of the extremal index.

1. OUTLINE

- Resampling methodologies have recently revealed to be very fruitful in the field of statistics of extremes.
- We mention the importance of
 - the Generalized Jackknife and
 - the Bootstrap

in the obtention of a reliable semi-parametric estimate of any parameter of extreme or even rare events, like a *high quantile*, the expected shortfall, the *return period* of a high level or the two primary parameters of extreme events, the *extreme value index* (EVI) and the *extremal index* (EI).

• In order to illustrate such topics, we shall consider minimumvariance reduced-bias (MVRB) estimators of a positive EVI and a jackknife Leadbetter-Nandagopalan EI-estimator.

2. EXTREME VALUE THEORY (EVT) - A BRIEF INTRODUCTION

2.1. The extreme value index (EVI)

• We use the notation γ for the EVI, the shape parameter in the Extreme Value d.f.,

$$EV_{\gamma}(x) = \begin{cases} \exp(-(1+\gamma x)^{-1/\gamma}), & 1+\gamma x > 0 & \text{if } \gamma \neq 0 \\ \exp(-\exp(-x), & x \in \mathbb{R} & \text{if } \gamma = 0, \end{cases}$$

and we now consider models with a heavy right-tail, i.e.

$$|\overline{F}:=1-F\in RV_{-1/\gamma}, \text{ for some } \gamma>0,$$

where the notation RV_{α} stands for the class of regularly-varying functions with an index $\alpha \in \mathbb{R}$, i.e., positive measurable functions $g(\cdot)$ such that $\forall x > 0$, $g(tx)/g(t) \to x^{\alpha}$, as $t \to \infty$.

2.2. The extremal index (EI)

- The EI is a parameter of extreme events related to the clustering of exceedances of high thresholds, a situation that occurs for stationary sequences [Leadbetter (1973), ZWT].
- We thus assume to be working with a strictly stationary sequence of r.v.'s, $\{X_n\}_{n\geq 1}$, from F, under the long range dependence condition \mathbf{D} [Leadbetter, Lindgren & Rootzén, 1983] and the local dependence condition \mathbf{D} " [Leadbetter & Nandagopalan, 1989], straightforwardly true for i.i.d. data.

Definition 1. The stationary sequence $\{X_n\}_{n\geq 1}$ is said to have an extremal index θ ($0 < \theta \leq 1$) if, for all $\tau > 0$, we can find a sequence of levels $u_n = u_n(\tau)$ such that, with $\{Y_n\}_{n\geq 1}$ the associated i.i.d. sequence (i.e., an i.i.d. sequence from the same F),

$$\mathbb{P}(Y_{n:n} \le u_n) = F^n(u_n) \underset{n \to \infty}{\longrightarrow} e^{-\tau} \text{ and } \mathbb{P}(X_{n:n} \le u_n) \underset{n \to \infty}{\longrightarrow} e^{-\theta\tau}.$$

- For dependent sequences there can thus appear a "shrinkage" of maximum values, but the limiting d.f. of $X_{n:n}$, linearly normalized, is still an Extreme Value d.f., EV_{γ} .
- Following Leadbetter (1983), ZWT, the extremal index can also be defined as:

$$\theta = \frac{1}{\text{limiting mean size of clusters}}$$

$$= \lim_{n \to \infty} P(X_2 \le u_n | X_1 > u_n) = \lim_{n \to \infty} P(X_1 \le u_n | X_2 > u_n),$$

$$u_n$$
: $F(u_n) = 1 - \tau/n + o(1/n)$, as $n \to \infty$, with $\tau > 0$, fixed.

• The ARMAX processes, will be the ones used here for illustration. Such processes are based on an i.i.d. sequence of innovations $\{Z_i\}_{i\geq 1}$, with d.f. H, and are defined through the relation,

$$X_i = \beta \max(X_{i-1}, Z_i), \quad i \ge 1, \quad 0 < \beta < 1.$$

- The ARMAX sequence has a stationary distribution F, dependent on H through the relation $F(\beta x)/F(x) = H(x)$ [Alpuim, 1989, JAP].
- Conditions **D** e **D**" hold for these sequences and stationary ARMAX sequences may possess an extremal index $\theta < 1$.
- For illustration, we shall consider ARMAX processes with Fréchet innovations. If $H(x) = \Phi_{\gamma}^{\beta^{-1/\gamma}-1}(x)$, $F(x) = \Phi_{\gamma}(x) = \exp\left(-x^{-1/\gamma}\right)$, $x \ge 0$, and $\theta = 1 \beta^{1/\gamma}$.

Notice the the richness of these processes, regarding clustering of exceedances. Note also that there is a "shrinkage" of maximum values, together with the exhibition of larger and larger "clusters" of exceedances of high values, as θ decreases.

2.3. First, second and third-order frameworks

• If $\overline{F} \in RV_{-1/\gamma}$, $\gamma > 0$, then [Gnedenko, 1943, AM], F is in the domain of attraction for maxima of a Fréchet-type $Extreme\ Value\ d.f.$, and we write

$$F \in \mathcal{D}_{\mathcal{M}}(EV_{\gamma>0}) =: \mathcal{D}_{\mathcal{M}}^+.$$

• In this same context of heavy right-tails, and with the notation

$$U(t) = F^{\leftarrow}(1 - 1/t), \ t \ge 1,$$

with $F^{\leftarrow}(y) = \inf\{x : F(x) \ge y\}$ the *generalized inverse function* of the underlying model F, we can further say that

$$F \in \mathcal{D}_{\mathcal{M}}^+ \iff \overline{F} \in RV_{-1/\gamma} \iff U \in RV_{\gamma},$$

the so-called *first-order conditions*.

• For consistent semi-parametric EVI-estimation, in the whole $\mathcal{D}_{\mathcal{M}}^+$, we merely need to assume the validity of the *first-order condition*, $U \in RV_{\gamma}$, and to work with adequate functionals, dependent on an *intermediate tuning* parameter k, the number of top o.s.'s involved in the estimation. This means that k needs to be such that

$$k = k_n \to \infty$$
 and $k_n = o(n)$, as $n \to \infty$.

• To obtain information on the non-degenerate asymptotic behaviour of semi-parametric EVI-estimators, we need further assuming a second-order condition, ruling the rate of convergence in the first-order condition. The second-order parameter, ρ (\leq 0), rules such a rate of convergence, and it is the parameter appearing in the limiting result,

$$\lim_{t \to \infty} \frac{\ln U(tx) - \ln U(t) - \gamma \ln x}{A(t)} = \frac{x^{\rho} - 1}{\rho},$$

which we often assume to hold for every x>0, and where |A| must be in RV_{ρ} [Geluk and de Haan, 1987]. For technical simplicity, we usually further assume that $\rho<0$, writing $A(t)=:\gamma\beta t^{\rho}$.

 In order to obtain full information on the asymptotic bias of any corrected-bias EVI-estimator, it is usual to consider a *Pareto* third-order condition, i.e., a Pareto-type class of models, with a tail function

$$1 - F(x) = Cx^{-1/\gamma} \Big(1 + D_1 x^{\rho/\gamma} + D_2 x^{2\rho/\gamma} + o(x^{2\rho/\gamma}) \Big),$$

as $x \to \infty$, with C > 0, D_1 , $D_2 \neq 0$, $\rho < 0$.

3. EVI and EI-ESTIMATORS

3.1. Classical EVI-estimators

• For models in $\mathcal{D}_{\mathcal{M}}^+$, the classical EVI-estimators are the Hill estimators [Hill, 1975, AS], averages of the log-excesses,

$$V_{ik} := \ln X_{n-i+1:n} - \ln X_{n-k:n}, \qquad 1 \le i \le k < n,$$

i.e.,

$$H_n(k) \equiv H(k) := \frac{1}{k} \sum_{i=1}^k V_{ik}, \quad 1 \le k < n.$$

• But these EVI-estimators have often a strong asymptotic bias for moderate up to large values of k, of the order of A(n/k), and the adequate accommodation of this bias has recently been extensively addressed.

3.2. Second-order reduced-bias (SORB) EVI-estimators

- We mention the pioneering papers by Peng (1998) [SN], Beirlant, Dierckx, Goegebeur and Matthys (1999) [Extremes], Feuerverger and Hall (1999) [AS], and Gomes, Martins and Neves (2000) [Extremes], among others.
- In these papers, authors are led to SORB EVI-estimators, with asymptotic variances larger than or equal to $(\gamma (1-\rho)/\rho)^2$, where $\rho(<0)$ is the aforementioned "shape" second-order parameter, ruling the rate of convergence of the normalized sequence of maximum values towards the limiting law EV_{γ} .

3.3. MVRB EVI-estimators

- Later on, Caeiro, Gomes & Pestana (2005) [Revstat], Gomes, Martins & Neves (2007) [Revstat] and Gomes, de Haan and Henriques-Rodrigues (2008) [JRSS] have been able to reduce the bias without increasing the asymptotic variance, kept at γ^2 .
- Those estimators, called *minimum-variance reduced-bias* (MVRB) EVI-estimators, are all based on an adequate "external" consistent estimation of the pair of second-order parameters, $(\beta, \rho) \in (\mathbb{R}, \mathbb{R}^-)$, done through estimators denoted $(\widehat{\beta}, \widehat{\rho})$, and outperform the classical estimators for all k.
- We now consider the simplest class of MVRB EVI-estimators:

$$\overline{H}(k) \equiv \overline{H}_{\widehat{\beta},\widehat{\rho}}(k) := H(k) \left(1 - \widehat{\beta} \left(n/k \right)^{\widehat{\rho}} / (1 - \widehat{\rho}) \right).$$

3.4. Asymptotic comparison of classical and MVRB EVIestimators

• The Hill estimator reveals usually a high asymptotic bias. Indeed, it follows from the results of de Haan & Peng (1998) that under the *general second-order condition*,

$$\sqrt{k} (H(k) - \gamma) \stackrel{d}{=} \text{Normal}_{0,\gamma^2} + b_H \sqrt{k} A(n/k) + o_p(\sqrt{k} A(n/k)),$$

where the bias $b_H \sqrt{k} A(n/k) = \gamma \beta \sqrt{k} (n/k)^{\rho}/(1-\rho)$ can be very large, moderate or small (i.e. go to ∞ , constant or 0) as $n \to \infty$.

• This non-null asymptotic bias, together with a rate of convergence of the order of $1/\sqrt{k}$, leads to sample paths with a high variance for small k, a high bias for large k, and a very sharp MSE pattern, as a function of k.

• Under the same conditions as before, $\sqrt{k}\left(\overline{H}(k)-\gamma\right)$ is asymptotically normal with variance also equal to γ^2 but with a null mean value. Indeed, under the validity of the aforementioned third-order condition related to Pareto-type class of models, we can then adequately estimate the vector of second-order parameters, (β,ρ) , and write [Caeiro, Gomes & Henriques-Rodrigues, 2009, CSTM]

$$\sqrt{k}\left(\overline{H}(k) - \gamma\right) \stackrel{d}{=} \operatorname{Normal}_{0,\gamma^2} + b_{\overline{H}}\sqrt{k}A^2(n/k) + o_p(\sqrt{k}A^2(n/k)).$$

• Consequently, $\overline{H}(k)$ outperforms H(k) for all k.

3.5. Classical EI-estimators

• Given a sample $(X_1, X_2, ..., X_n)$ and chosen a suitable threshold u, with I_A the indicator function of A, a possible estimator of θ [Leadbetter and Nandagopalan, 1989] is given by

$$\widehat{\theta}_n^N = \widehat{\theta}_n^N(u) := \frac{\sum_{j=1}^{n-1} I_{[X_j > u, X_{j+1} \le u]}}{\sum_{j=1}^n I_{[X_j > u]}} = \frac{\sum_{j=1}^{n-1} I_{[X_j \le u < X_{j+1}]}}{\sum_{j=1}^n I_{[X_j > u]}}.$$

• To have consistency, the high level u must be: $n(1 - F(u_n)) = c_n \tau = \tau_n$, $\tau_n \to \infty$ and $\tau_n/n \to 0$ [Nandagopalan, 1990].

• To make the semi-parametric EI-estimation closer to the semi-parametric EVI-estimation, we consider [Gomes, Hall & Miranda, 2008, CSDA] $u \in \left[X_{n-k:n}, X_{n-k+1:n}\right]$ and the estimator

$$\widehat{\theta}_n^N(k) \equiv \theta_n^N(u) := \frac{1}{k} \sum_{j=1}^{n-1} I_{[X_j \le X_{n-k:n} < X_{j+1}]}.$$

Bias assumption on the data structures.

• For independent, identically distributed data ($\theta = 1$):

$$\mathbb{E}[\widehat{\theta}_n^N(k)] = 1 + \left(\frac{1}{2k} - \frac{k}{n}\right)(1 + o(1)).$$

Moreover, for ARMAX processes, we get

$$\left| \mathbb{E}\left[\widehat{\theta}_n^N(k)\right] = \theta - \left(\frac{\theta(\theta+1)}{2} \left(\frac{k}{n}\right) - \frac{3-2 \theta}{2 k}\right) (1+o(1)) \right|.$$

• We shall thus consider the EI-estimator as a function of k, the number of o.s.'s higher than the chosen threshold. We further assume that, as $n \to \infty$, and for intermediate k,

$$Bias\left[\widehat{\theta}_{n}^{N}(k)\right] = \varphi_{1}(\theta)\left(\frac{k}{n}\right) + \varphi_{2}(\theta)\left(\frac{1}{k}\right) + o\left(\frac{1}{k}\right) + o\left(\frac{k}{n}\right).$$

• In the semi-parametric EI-estimation we have thus to cope with problems similar to the ones appearing in the EVI-estimation: increasing bias, as the threshold decreases and a high variance for high thresholds.

Is it possible to improve the performance of estimators through the use of computer intensive methods?

4. RESAMPLING METHODOLOGIES

- The use of resampling methodologies [Efron, 1979, AS] has revealed to be promising in the estimation of the nuisance parameter k, and in the reduction of bias of any estimator of a parameter of extreme events.
- If we ask how to choose the tuning parameter k in the estimation of a parameter of extreme events, η , through T(k), we usually consider the estimation of $k_0^T := \arg\min_k MSE(T(k))$.
- To obtain estimates of k_0^T one can then use a *double-bootstrap* method applied to an adequate *auxiliary statistic* like $A(k) := T(k) T(\lfloor k/2 \rfloor)$, where $\lfloor x \rfloor$ stands as usual to the integer part of x, and which tends to **zero** and has an asymptotic behaviour similar to the one of T(k) (Gomes and Oliveira, 2001, *Extremes*, among others). We shall not sketch such a *double-bootstrap* algorithm.

- At such optimal levels, we have a non-null asymptotic bias.
- If we still want to remove such a bias, we can then make use of the *generalized jackknife* methodology.
- The main objectives of the *Jackknife methodology* are:
 - 1. Bias and variance estimation of a certain estimator, only through manipulation of observed data \underline{x} .
 - 2. The building of estimators with bias and mean squared error smaller than those of an initial set of estimators.
- The Jackknife or Generalized Jacknife (GJ) are resampling methodologies, which usually give a positive answer to the question: "May the combination of information improve the quality of estimators of a certain parameter or functional?".

- It is then enough to consider an adequate pair of estimators of the parameter of extreme events under consideration, possibly also T(k) and $T(\lfloor k/2 \rfloor)$, and to built a *reduced-bias affine combination* of them. In Gomes, Martins & Neves, 2000, also among others, we can find an application of this technique to the Hill estimator.
- In order to illustrate the use of these methodologies in EVT, we shall essentially consider, just as performed in Gomes, Martins & Neves, 2013, CSTM, the aforementioned MVRB EVI-estimators $\overline{H}(k)$ in Caeiro *et al.* (2005), and the classical EI-estimators, as performed in Gomes, Martins & Neves, 2007.

4.1. The jackknife methodology and bias reduction

- The pioneering EVI reduced-bias estimators are, in a certain sense, *generalized jackknife* (GJ) estimators, i.e., affine combinations of well-known estimators of γ .
- The generalized jackknife statistic was introduced by Gray and Shucany (1972): Let $T_n^{(1)}$ and $T_n^{(2)}$ be two biased estimators of γ , with similar bias properties, i.e.,

Bias
$$(T_n^{(i)}) = \gamma + \phi(\gamma)d_i(n), \quad i = 1, 2.$$

Then, if $q = q_n = d_1(n)/d_2(n) \neq 1$, the affine combination

$$T_n^G := \left(T_n^{(1)} - qT_n^{(2)}\right)/(1-q)$$

is an unbiased estimator of γ .

4.2. A GJ corrected-bias EVI-estimator

• Given \overline{H} , the most natural GJ r.v. is the one associated to the random pair $(\overline{H}(k), \overline{H}(\lfloor \theta k \rfloor))$, $0 < \theta < 1$, is

$$\overline{H}^{GJ(q,\theta)}(k) := \frac{\overline{H}(k) - q \ \overline{H}(\lfloor \theta k \rfloor)}{1 - q}, \ 0 < \theta < 1,$$

with

$$q = q_n = \frac{Bias_{\infty}[\overline{H}(k)]}{Bias_{\infty}[\overline{H}(\lfloor \theta k \rfloor)]} = \frac{A^2(n/k)}{A^2(n/\lfloor \theta k \rfloor)} \xrightarrow[n/k \to \infty]{} \theta^{2\rho}.$$

It is thus sensible to consider $q=\theta^{2\rho}$, $\theta=1/2$, and, with $\hat{\rho}$ a consistent estimator of ρ , the GJ estimator,

$$\overline{H}^{GJ}(k) := \frac{2^{2\widehat{\rho}} \overline{H}(k) - \overline{H}(\lfloor k/2 \rfloor)}{2^{2\widehat{\rho}} - 1}.$$

• Then, and provided that $\hat{\rho} - \rho = o_p(1)$,

$$\sqrt{k} \left(\overline{H}^{GJ}(k) - \gamma \right) \stackrel{d}{=} \operatorname{Normal}_{0, \sigma_{GJ}^2} + o_p(\sqrt{k}A^2(n/k)),$$

with

$$\sigma_{GJ}^2 = \gamma^2 (1 + 1/(2^{-2\rho} - 1)^2.$$

We have thus a trade-off between variance and bias . . .
 The bias decreases, but the variance increases . . .
 But we are able to reach a better performance at optimal levels.

4.3. A GJ corrected-bias EI-estimator

- Since the bias term of the aforementioned classical EI-estimator reveals 2 main components of \neq orders, we need to use an affine combination of 3 EI-estimators and a order-2 GJ-statistic.
- Let $\underline{X} = (X_1, \dots, X_n)$ be a sample from F, and let $T_n = T_n(\underline{X}, F)$ be an estimator of a functional $\theta(F)$, or of a parameter θ .
- If the bias of our estimator reveals 2 main terms that we would like to remove, the GJ methodology advises us to deal with 3 estimators with the same type of bias:

Definition 2. Given 3 estimators $T_n^{(1)}$, $T_n^{(2)}$ and $T_n^{(3)}$ of θ :

$$E\left[T_n^{(i)} - \theta\right] = d_1(\theta) \ \varphi_1^{(i)}(n) + d_2(\theta) \ \varphi_2^{(i)}(n), \ i = 1, 2, 3,$$

the GJ statistic (of order 2) is given by

$$T_n^{GJ} := \left\| \begin{array}{cccc} T_n^{(1)} & T_n^{(2)} & T_n^{(3)} \\ \varphi_1^{(1)} & \varphi_1^{(2)} & \varphi_1^{(3)} \\ \varphi_2^{(1)} & \varphi_2^{(2)} & \varphi_2^{(3)} \end{array} \right\| \left. \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ \varphi_1^{(1)} & \varphi_1^{(2)} & \varphi_1^{(3)} \\ \varphi_2^{(1)} & \varphi_2^{(2)} & \varphi_2^{(3)} \end{array} \right\| \right. ,$$

with ||A|| denoting, as usual, the determinant of the matrix A.

Straightforwardly, one may state:

Proposition 1. T_n^{GJ} is unbiased for the estimation of θ .

- ullet Moreover, although the variance of T_n^{GJ} is always larger than the variance of the original estimators, the MSE of T_n^{GJ} is often smaller than that of any of the statistics $T_n^{(i)}$, i=1,2,3.
- The information on the bias of the EI-estimator $\widehat{\theta}_n^N(k)$ led us to consider first the GJ EI-estimator of order 2, based on the estimator $\widehat{\theta}_n^N(k)$ computed at the three levels, k, $\lfloor k/2 \rfloor + 1$ and $\lfloor k/4 \rfloor + 1$ [Gomes and Miranda, 2003]:

$$\widehat{\theta}_n^{GJ}(k) = 5 \ \widehat{\theta}_n^N \left(\lfloor k/2 \rfloor + 1 \right) - 2 \left(\widehat{\theta}_n^N \left(\lfloor k/4 \rfloor + 1 \right) + \widehat{\theta}_n^N(k) \right).$$

• This estimator has very stable sample paths, around the target value θ , BUT at expenses of a very high variance, which does not enable it to overpass the original estimator, regarding MSE at optimal levels.

• We thus think sensible to consider, more generally, the levels k, $\lfloor \delta k \rfloor + 1$ and $\lfloor \delta^2 k \rfloor + 1$, dependent of a *tuning parameter* δ , $0 < \delta < 1$, and the class of estimators,

$$\widehat{\theta}_n^{GJ(\delta)}(k) := \frac{(\delta^2 + 1) \ \widehat{\theta}_n^N \left(\lfloor \delta k \rfloor + 1 \right) - \delta \left(\widehat{\theta}_n^N \left(\lfloor \delta^2 k \rfloor + 1 \right) + \widehat{\theta}_n^N(k) \right)}{(1 - \delta)^2}$$

- Note that $\widehat{\theta}_n^{GJ}(k) \equiv \widehat{\theta}_n^{GJ(1/2)}(k)$.
- For a stationary Fréchet(1) ARMAX sample of size n=5000, with $\theta=0.5$, we next present
 - sample paths of $\widehat{\theta}_n^N(k)$ and $\widehat{\theta}_n^{GJ}(k)$ (left), and
 - the expected values of such an estimator, associated to $\delta = 0.1, 0.2, 0.4 e 0.5(right)$.

• Note the reasonably high stability around the target value $\theta = 0.5$, of the sample path and mean value of the GJ EI-estimator for a wide range of k-values, comparatively to that of Nandagopalan's estimator.

Remark 1. The mean value stability around the target value θ , for a wide range of k-levels, is true for all θ and for all simulated models.

But the GJ-estimator, $\widehat{\theta}_n^{GJ}$, may not overpass, for n=1000 (and small θ), the original estimator, $\widehat{\theta}_n^N$, regarding MSE at optimal levels. Extra investment is thus needed on the "optimal" choice of the 3 levels to be used in the building of a GJ extremal index estimator or on the use of extra resampling or sub-sampling techniques, as performed in Gomes, Hall & Miranda (2008), who have used simple subsampling techniques, in order to attain a smaller mean squared error (MSE) at optimal levels.

5. A CASE STUDY

5.1. The GJ EVI-estimation applied to insurance data

We consider an illustration of the performance of the EVI-estimates under study, through the analysis of automobile claim amounts exceeding 1,200,000 Euro over the period 1988-2001, gathered from several European insurance companies co-operating with the same re-insurer (Secura Belgian Re). This data set was already studied in Beirlant, Goegebeur, Segers & Teugels (2004), WILEY, Vandewalle and Beirlant (2006), *IME* and Beirlant, Figueiredo, Gomes & Vandewalle (2008), *JSPI*, as an example to excess-of-loss reinsurance rating and heavy-tailed distributions in car insurance.

- Regarding the EVI-estimation, note that whereas the Hill estimator is unbiased for the estimation of γ when the underlying model is a strict Pareto model, it always exhibits a relevant bias when we have only Pareto-like tails, as happens here.
- The corrected-bias estimators, which are "asymptotically unbiased", have a smaller bias, exhibit more stable sample paths as functions of k, and enable us to take a decision upon the estimate of γ to be used, even with the help of any heuristic stability criterion, like the "largest run" suggested in Gomes and Figueiredo (2006), *Test*.
- For the Hill estimator, as we know how to estimate β and ρ , and we have simple techniques to estimate the OSF. Indeed, we get $\hat{k}_0^H = \left((1-\hat{\rho})^2 n^{-2\hat{\rho}}/(-2\ \hat{\rho}\ \hat{\beta}^2)\right)^{1/(1-2\hat{\rho})} = 58.$

- The aforementioned bootstrap algorithm, not detailed here, helps us to provide an adaptive choice for corrected-bias EVI-estimators.
- \bullet We have got $\hat{k}_{0|H}=$ 56, $\hat{k}_{0|\overline{H}}=$ 158, $\hat{k}_{0|\overline{H}}GJ}=$ 261, and the EVI-estimates

$$H^* = 0.286$$
, $\overline{H}^* = 0.240$ and $\overline{H}^{GJ^*} = 0.236$,

the values pictured in the following Figure.

Remark 2. Note that bootstrap confidence intervals as well as asymptotic confidence intervals are easily associated with the estimates presented, the smallest size (with a high coverage probability) being related with \overline{H}^{GJ^*} .

6. SOME OVERALL CONCLUSIONS

- 1. The most attractive features of the GJ estimators are their stable sample paths (for a wide region of k values), close to the target value, and the "bath-tube" MSE patterns.
 - The insensitivity of the mean value (and sample path) to changes in k is indeed the nicest feature of these GJ-estimators.
- 2. Regarding MSE at optimal levels, the simplest GJ EI-estimator does not overpass the original one. To obtain relative efficiencies greater than 1, we had to proceed to a \neq choice of the 3 levels under play. Even with such a choice, and for θ small, such an objective is often attained only with the extra use of a subsampling algorithm. Further investment is thus welcome.

REFERENCES

- 1. Alpuim, M.T. (1989). An extremal markovian sequence. J. Appl. Probab. 26, 219–232.
- 2. Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G. (1999). Tail index estimation and an exponential regression model. *Extremes* 2, 177–200.
- 3. Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). *Statistics of Extremes. Theory and Applications*. Wiley.
- 4. Beirlant, J., Figueiredo, F., Gomes, M.I. and Vandewalle, B. (2008). Improved reduced-bias tail index and quantile estimators. *J. Statist. Plann. and Inference* **138**:6, 1851–1870.
- 5. Caeiro, F., Gomes, M.I. and Pestana, D.D. (2005). Direct reduction of bias of the classical Hill estimator. *Revstat* **3**(2), 113–136.
- 6. Caeiro, F., Gomes, M.I. and Henriques-Rodrigues, L. (2009). Reduced-bias tail index estimators under a third order framework. *Communications in Statistics Theory & Methods* 38:7, 1019–1040.
- 7. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife *Ann. Statist.* **7**:1, 1–26.
- 8. Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. *Annals Statistics* **27**, 760–781.
- 9. Geluk, J. and de Haan, L. (1987). Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, Netherlands.
- 10. Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. *Ann. Math.* **44**, 423–453.

- 11. Gomes, M.I. and Figueiredo, F. (2006). Bias reduction in risk modelling: semi-parametric quantile estimation. *Test* **15**:2, 375–396.
- 12. Gomes, M.I. and Miranda, M.C. (2003). A metodologia jackknife na estimação do índice extremal. In Brito, P. et al. (eds.), *Literacia e Estatística*, Edições S.P.E., 299–310.
- 13. Gomes, M.I. and Oliveira, O. (2001). The bootstrap methodology in Statistics of Extremes: choice of the optimal sample fraction. *Extremes* **4**:4, 331–358, 2002.
- 14. Gomes, M.I., Martins, M.J. and Neves, M. (2000). Alternatives to a semi-parametric estimator of parameters of rare events: the Jackknife methodology. *Extremes* **3**(3), 207–229.
- 15. Gomes, M. I., Martins, M. J. and Neves, M. (2007). Improving second order reduced bias extreme value index estimation. *Revstat* **5**(2), 177–207.
- 16. Gomes, M. I., de Haan, L. and Henriques Rodrigues, L. (2008). Tail index estimation through accommodation of bias in the weighted log-excesses. *J. Royal Statistical Society* **B70**, Issue 1, 31–52.
- 17. Gomes, M.I., Hall, A. and Miranda, C. (2008). Subsampling techniques and the Jackknife methodology in the estimation of the extremal index. *J. Comput. Statist. and Data Analysis* **52**:4, 2022–2041.
- 18. Gomes, M.I., Martins, M.J. and Neves, M.M. (2013). Generalised Jackknife-Based Estimators for Univariate Extreme-Value Modelling. *Communications in Statistics: Theory and Methods* **42**:7, 1227–1245.
- 19. Gray, H.L., and Schucany, W.R. (1972). *The Generalized Jackknife Statistic*. Marcel Dekker.
- 20. de Haan, L. and Peng, L. (1998). Comparison of tail index estimators. *Statistica Neerlandica* **52**, 60–70.

- 21. Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. *Ann. Statist.* **3**, 1163–1174.
- 22. Leadbetter, M.R. (1973). On extreme values in stationary sequences. *Z. Wahrsch. Verw. Gebiete* **28**, 289–303.
- 23. Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences. *Z. Wahrsch. Verw. Gebiete* **65**:2, 291–306.
- 24. Leadbetter, M.R. and Nandagopalan, S. (1989). On exceedance point processes for stationary sequences under mild oscillation restrictions. In Hüsler, J. and R.-D. Reiss (eds.), *Extreme Value Theory*, Springer-Verlag, 69–80.
- 25. Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Series. Springer-Verlag, New York.
- 26. Nandagopalan, S. (1990). *Multivariate Extremes and Estimation of the Extremal Index*. Ph.D. Thesis, Univ. North Carolina at Chapel Hill.
- 27. Peng, L. (1998). Asymptotically unbiased estimator for the extreme-value index. *Statist.* and *Probab. Letters* **38**(2), 107–115.
- 28. Vandewalle, B. and Beirlant, J. (2006). On univariate extreme value statistics and the estimation of reinsurance premiums. *Insurance: Mathematics and Economics* **38**, 441–459.

THAT's ALL and THANKS . . .

To Ross: a photo of Lisbon, we both love, as another token of friendship.

