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Introduction A long long time ago

An experiment 62 years ago

JOURNAL OF THE OPTICAL SOCIETY OF AMERICAV

Measurement of the Roughness of the Sea Surface from Photographs
of the Sun's Glitter

CIIARLES COX AND WALTER MUNK
Scripps Institution of Oceanography,* La Jolla, California

(Received April 28, 1954)

A method is developed for interpreting the statistics of the
sun's glitter on the sea surface in terms of the statistics of the
slope distribution. The method consists of two principal phases:
(1) of identifying, from geometric considerations, any point on
the surface with the particular slope required for the reflection of
the sun's rays toward the observer; and (2) of interpreting the
average brightness of the sea surface in the vicinity of this point
in terms of the frequency with which this particular slope occurs.
The computation of the probability of large (and infrequent)
slopes is limited by the disappearance of the glitter into a back-
ground consisting of (1) the sunlight scattered from particles
beneath the sea surface, and (2) the skylight reflected by the sea
surface.

The method has been applied to aerial photographs taken under
carefully chosen conditions in the Hawaiian area. Winds were
measured from a vessel at the time and place of the aerial photo-
graphs, and cover a range from 1 to 14 m sec~'. The effect of

surface slicks, laid by the vessel, are included in the study.
A two-dimensional Gram-Charlier series is fitted to the data.
As a first approximation the distribution is Gaussian and isotropic
with respect to direction. The mean square slope (regardless of
direction) increases linearly with the wind speed, reaching a value
of (tanl6 0 )2 for a wind speed of 14 m sec-'. The ratio of the up/
downwind to the crosswind component of mean square slope
varies from 1.0 to 1.9. There is some up/downwind skewness
which increases with increasing wind speed. As a result the most
probable slope at high winds is not zero but a few degrees, with
the azimuth of ascent pointing downwind. The measured peaked-
ness which is barely above the limit of observational error, is such
as to make the probability of very large and very small slopes
greater than Gaussian. The effect of oil slicks covering an area of
one-quarter square mile is to reduce the mean square slopes by
a factor of two or three, to eliminate skewness, but to leave peaked-
ness unchanged.

1. INTRODUCTION

THE purpose of this study was to make quantita-
T tive measurements pertaining to the roughness of
the sea surface; in particular, to learn something con-
cerning the distribution of slope at various wind speeds.
This distribution plays an important part in the re-
flection and refraction of acoustic and electromagnetic
radiation, and in the complex problem of wind stress on
the water surface.

Our method consists in photographing from a plane
the sun's glitter pattern on the sea surface, and trans-
lating the statistics of the glitter into the statistics of
the slope distribution. Winds were measured from a
vessel at the time and place the photographs were taken.
They ranged from 1 to 14 m sec-'.

If the sea surface were absolutely calm, a single,
mirror-like reflection of the sun would be seen at the
horizontal specular point. In the usual case there are
thousands of "dancing" highlights. At each highlight
there must be a water facet, possibly quite small, which
is so inclined as to reflect an incoming ray from the sun
towards the observer. The farther the highlighted facet
is from the horizontal specular point, the larger must
be this inclination. The width of the glitter pattern is
therefore an indication of the maximum slope of the
sea surface.

Spooner' in a letter to Baron de Zach reports four
measurements by this method in the Tyrrhenian Sea,

* Scripps Institution contribution No. 737. This work has been
supported by the Geophysical Research Directorate of the Air
Force Cambridge Research Center, AMC, under contract No. AF
19(122)-413.

1 J. Spooner, Corresp. Astro. du Baron de Zach, 6 (1822).

all yielding maximum slopes of 250. Hulbert2 demon-
strates by this method that the maximum slope in the
North Atlantic increased from 150 at a 3-knot wind to
250 at an 18-knot wind. Shuleikin3 took a long series
of measurements of the width of the "road to happi-
ness" over the Black Sea (a Russian synonym for the
glitter pattern from the setting sun), and deduced that
slopes up to 300 were not uncommon.

These measurements of maximum slope, so widely
separated in space and time, are reasonably consistent.
They do depend, however, on the manner in which the
outer boundary of the glitter pattern is selected. This
selection is apparently influenced by the brightness of
the light source relative to the sky, and by the sensi-
tivity of the eye. For otherwise the moon's glitter
would not appear narrower than the sun's glitter under
otherwise identical conditions. We have avoided this
difficulty by computing the distribution of slopes from
the measured variation of brightness within the glitter
pattern (rather than computing maximum slopes from
the outer boundaries). Our method gives more infor-
mation-and requires much more work.

The two principal phases are (1) to identify, from
geometric considerations, a point on the sea surface
(as it appears on the photographs) with the particular
slope required at this point for the reflection of sun-
light into the camera, and (2) interpret the average
brightness of the sea surface (or darkening of the nega-
tive) at this point in terms of the frequency with which
this particular slope occurs. By choosing many such
points we derive the frequency distribution of slopes.

2 E. 0. Hulbert, J. Opt. Soc. Am. 24, 35 (1934).
3 V. V. Shuleikin, Fizika Moria (Physics of the Sea) (Izdatelstvo

Akad. Nauk. U.S.S.R., Moscow, 1941).
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FIG. 1. Glitter patterns photographed by aerial camera pointing vertically downward at solar elevation of k=700.

The superimposed grids consist of lines of constant slope azimuth a (radial) drawn for every 30°, and of constant tilt /3

(closed) for every 5°. Grids have been translated and rotated to allow for roll, pitch, and yaw of plane. Shadow of plane

can barely be seen along a= 1800 within white cross. White arrow shows wind direction. Left: water surface covered by

natural slick, wind 1.8 m sec', rms tilt o= 0.0022. Right: clean surface, wind 8.6 m sec', =-0.045. The vessel Reverie is
within white circle.

2. THE OBSERVATIONS

Aerial Observations

The derivation of Sec. 4 will show that the radiance

of reflected sunlight from the sea surface is determined
by the probability distribution of slopes provided the
light is reflected only once. To avoid multiple reflec-

tions we have made measurements only when the sun
was high (only slopes greater than about one-half the

angle of sun elevation can cause a second reflection).
For a high sun the glitter pattern covers the surface to
all sides of a point directly beneath the observer, and
aerial observation is indicated.

A B-17G airplane was made available from the 3171st
Electronics Research and Development Group, Griffiss
Air Force Base, Rome, New York. Four K-17 (six-inch
focal length) aerial cameras were mounted on a frame
which could be lowered through the bomb bay and
leveled during flight. They were wired for synchronous

exposures. Two cameras pointed vertically downward,
the other two pointed to port and were inclined down-
ward at an angle of 300 with the horizontal. This
allowed for a 25 percent overlap between the vertical
and tilted photographs. One of the vertical cameras and
one of the tilted cameras took ordinary in-focus or
image photographs (see Fig. 1) using "variable density
minus blue" filters. At an altitude of 2000 feet two
points on the sea surface separated by more than 40 cm
are resolved on the image photographs. The two re-
maining cameras took photometric photographs. From
these cameras the lens systems had been removed, and
glass sandwich filters containing Wratten gelatin A-25
absorbers installed.

During the photographic runs, the plane was steered
by sun compass so that the azimuth of the tilted cameras

was toward the sun. An attempt was made to avoid
cloud shadows and atmospheric haze. In most cases the
field of the cameras was sufficiently restricted to avoid
these effects when the plane was flying at an altitude
of 2000 feet.

Observations at Sea

In order to correlate measurements of wind speed
with slope distribution free from modifying effects of
land it was necessary to have meteorological records
from a vessel near the location of the photographs.
For this purpose a 58-foot schooner, the Reverie, was
chartered and equipped with anemometers on the fore-
masthead (41 feet above sea level) and the bowsprit
(9 feet). The signal from the anemometers was smoothed
with an electrical low-pass filter having an 18-second
time constant, then recorded. Wind direction was esti-
mated by eye. Other measurements included the air
and water temperatures, and the wet and dry bulb
temperatures.

One of the objects of this investigation was to study
the effect of surface slicks. First we attempted to spray
powdered detergent from the vessel and later from the
plane, but the slicks thus produced did not persist
sufficiently. A satisfactory solution was to pump oil on
the water, using a mixture consisting of 40 percent used
crankcase oil, 40 percent Diesel oil, and 20 percent
fish oil. With 200 gallons of this mixture a coherent
slick 2000 feet by 200 feet could be laid in 25 minutes,
provided the wind did not exceed 20 mph.

Location of Observations

During July, 1951, observations were taken offshore
from Monterey, California, where a variety of wind
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Introduction A long long time ago

The Cox and Munk experiment 1951–1954 on wave
asymmetry –
compared to Lagrange asymmetry; left – Cox/Munk, right – Lagrange
top – across waves
bottom – along waves

−2 0 2
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Introduction A long time ago

Some good literature
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Introduction A long time ago

"The correct frequency interpretation"

What is the height of "an arbitrary local maximum" in a stationary
(differentiable) stochastic process X (t) – and what is its distribution?

Answer: The limit of the empirical distribution function as observation
interval grows.

P(height of a local maximum ≤ u)

= lim
T→∞

T−1#local maxima in [0,T ] with height less than u
T−1#local maxima in [0,T ]

=
E (#{t ∈ [0, 1],X ′(t) = 0, downcrossing, AND X (t) ≤ u})

E (#{t ∈ [0, 1],X ′(t) = 0, downcrossing})

Also David Slepian 1962.
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Introduction A long time ago

Rice formula gives answers

Rice formula gives the expectation of the number of crossings and the
number of "marked" crossings per time unit of a stationary process; explicit
for Gaussian processes.

The slope at the instance of upcrossings of any level has a Rayleigh
distribution
The height of a local maximum is distributed as

αU +
√

1− α2R; U ∼ N(0, 1),R ∼ Rayleigh

where α measures the width of the energy spectrum
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Gauss versus Lagrange More recent

The Gaussian wave model (1952)

The height W (t, s) of the water surface at location s at time t is a
Gaussian stationary (homogeneous) random process, expressed as a sum
(integral !)

W (t, s) =
∑
k

Ak cos(κks − ωkt + φk)

of moving cosines with
random amplitudes Ak

random phases φk

and with fixed frequencies (1/wave period) and wave numbers (1/wave
length).
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Gauss versus Lagrange More recent

Gaussian characteristics

A Gaussian sea is statistically symmetric:
the sea surface can be turned upside down
a wave movie can be run backwards

and you don’t see any difference

It needs to be combined with physics/hydrodynamics – gives the Lagrange
model
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Gauss versus Lagrange More recent

Why using a stochastic Lagrange model?

The (linear) Gaussian wave model allows exact computation of
wave characteristic distributions (the WAFO toolbox)
produces crest-trough and front-back stochastically symmetric waves
The modified stochastic Lagrange model can produce
(2006) crest-trough asymmetric waves (2D)
(2009) front-back asymmetric waves (2D)
(2011) front-back asymmetric waves (3D)
still allows for exact computation of wave
characteristic distributions
Software exists for calculation of statistical wave characteristic
distributions (crest, trough heights, period, steepness etc)
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The stochastic 3D Lagrange model The Gaussian generator

Waves according to Google search

Circles in deep water, ellipses in shallow water

TASK: Combine Gauss with Google
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The stochastic 3D Lagrange model The Gaussian generator

Gaussian generator and the orbital spectrum

In the Gaussian model the vertical height W (t, s) of a particle at the free
surface at time t and location s = (u, v) is an integral of harmonics with
random phases and amplitudes:

κ = (κx , κy ) = κ(cos θ, sin θ)

ω = ω(κ) =
√

gκ tanhκh

W (t, s) =
∫ ∞
ω=0

∫ π

θ=−π
e i(κs−ωt) dζ(ω, θ)

with S(ω, θ) = the “orbital spectrum” and ζ(ω, θ) is a Gaussian complex
“spectral process”.

Wave direction = θ
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The stochastic 3D Lagrange model The free Lagrange model

The stochastic Lagrange model –

Describes horizontal and vertical movements of individual surface water
particles. Use

W (t, s) =
∫

e i(κs−ωt) dζ(κ, ω)

for the vertical movement of a particle with (intitial) reference coordinate
s = (u, v) and write

Σ(t, s) =
(

X (t, s)
Y (t, s)

)
= horizontal location at time t

Σ(t, s)− s is the horizontal discplacement of a particle from its original
location s
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The stochastic 3D Lagrange model The free Lagrange model

– with horizontal Gaussian movements

Use the same (vertical) Gaussian spectral process as in W (t, s) to generate
also the horizontal variation

Fouques,Krogstad,Myrhaug,Socquet-Juglard (2004), Gjøsund (2000,2003)
Aberg, Lindgren, Lindgren (2006,2007,2008,2009,2011), Guerrin (2009)

Σ(t, s) =
(

X (t, s)
Y (t, s)

)
= s +

∫
H(θ, κ) e i(κs−ωt) dζ(κ, ω)

where the filter function H depends on water depth h:

H(θ, κ) = i
coshκh
sinhκh

(
cos θ
sin θ

)
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The stochastic 3D Lagrange model The free Lagrange model

The stochastic Lagrange model

The 3D stochastic first order Lagrange wave model is the triple of Gaussian
processes

(W (t, s),Σ(t, s)) = (W (t, s),X (t, s),Y (t, s))

All covariance functions and auto-spectral and cross-spectral density
functions for Σ(t, s) follow from the orbital spectrum S(ω, θ) and the filter
equation.

Space wave : keep time coordinate fixed

Time wave : keep space coordinate – (X (t, s),Y (t, s)) – fixed

This will (later) lead us to a "Palm type" problem – what are the
distributions of (W (t, s),Σ−1(t, (0, 0))) when (X (t, s),Y (t, s)) = (0, 0),
say.
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The stochastic 3D Lagrange model The free Lagrange model

Lagrange 2D space waves, time fixed

A Lagrange space wave at time t0 is the parametric curve (2D) or surface
(3D)

L(x) : s ⇒ (XM(t0, s),W (t0, s))
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The stochastic 3D Lagrange model The free Lagrange model

Ocean waves need a direction

The free Lagrange waves are peaked –

but they have no preferred direction!
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Front-back asymmetry The modified Lagrange model

Front-back asymmetric Lagrange waves

To get realistic front-back asymmetry one needs a model with external
input from wind, for example, by a parameter α:

∂2X (t, s)
∂t2 =

∂2XM(t, s)
∂t2 + αW (t, s)

The filter function from vertical W (t, u) to horizontal X (t, u) is then

H(ω) = i
coshκh
sinhκh

+
α

(−iω)2
= ρ(ω) e iθ(ω),

Implies an extra phase shift (θ = π/2 in the free model)

X (t, u) = u +

∫
e i(κu−ωt+θ(ω))ρ(ω) dζ(ω, κ)
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Front-back asymmetry The modified Lagrange model

Particle path depends on wavelength

Wavelength: 1m (blue), 5m (green), 50m (red)
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Front-back asymmetry The modified Lagrange model

Space and time waves
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Front-back asymmetry The modified Lagrange model

For 3D waves the filter function needs to take directional
spreading into account

An example:

H(θ, κ) =
α

(iω)2
·
(

cos2(θ) | cos(θ)|
cos2(θ) sin(θ) sign(cos θ)

)
+ i

coshκh
sinhκh

·
(
cos θ
sin θ

)
.

to take care of wind blowing in positive x-direction.

Front-back asymmetry depends on directional spreading in the orbital
spectrum
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The 3D-model and the generalized Rice formula Explicit definitions

Explicit definitions – I

The model

(W (t, s),Σ(t, s)) = (W (t, s),X (t, s),Y (t, s))

is an implicitly defined model. The space and time models can be made
explicit by

s = Σ−1(t, (x , y))

equal to the reference point that is mapped to the observation point (x , y).

Note: There may be many solutions to Σ(t, s) = (x , y).
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The 3D-model and the generalized Rice formula Explicit definitions

Explicit definitions – II

Space wave L(t0, (x , y)) = W (t0,Σ−1(t0, (x , y)))
= photo of the surface

Time wave L(t, (x0, y0)) is the parametric curve:

t 7→W (t,Σ−1(t, (x0, y0)))
= measured at a wave pole
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The 3D-model and the generalized Rice formula Explicit definitions

Wave slopes in space (Cox/Munk) and time

The Cox/Munk experiment observed wave slopes at fixed time – needs
space derivatives: (

Wu
Wv

)
=

(
Xu Yu
Xv Yv

)(
Lx
Ly

)
(1)

An oil platform experiences wave slopes at fixed location – needs time
derivatives

Wt = Lt +
(
Xt Yt

)(Lx
Ly

)
Lt = Wt −

(
Wu Wv

)(Xu Xv
Yu Yv

)−1(Xt
Yt

)
(2)
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The 3D-model and the generalized Rice formula Multiple crossings

Asynchronous sampling in space = Cox/Munch, t0 = 0

To find the distributions of the slopes Lx , Ly at a fixed point, say (0, 0) ,
invert (1) and find
the distribution of (Wu,Wv ,Xu,Xv ,Yu,Yv ) at reference point s
under the condition that (X (s),Y (s)) = (0, 0)

Contour lines prefer to cross under
straight angles;
”perpendicularitybias”
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The 3D-model and the generalized Rice formula Generalized Rice formula

Standard Rice formulas

The original Rice formula gives the expected number of level crossings of
level u per time unit in a stationary process:

E (#{t ∈ [0, 1];X (t) = u, upcrossing})
= E (X ′(0)+ | X (0) = u) fX (0)(u)
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The 3D-model and the generalized Rice formula Generalized Rice formula

Marked Rice formula

The Rice formula for marked crossing gives the expectede number of level
crossings per time unit in a stationary process, at which a "mark" has a
certain characteristic. The "mark" can be e.g. the derivative at the
upcrossing.

E (#{t ∈ [0, 1];X (t) = u, upcrossing, and "mark" ∈ B})
= E (X ′(0)+ × 1"mark" ∈ B | X (0) = u) fX (0)(u)
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The 3D-model and the generalized Rice formula Generalized Rice formula

Multivariate Rice formula

A generalized (multivariate) Rice formula gives the expected number of
simultaneous crossings with marks, for example with marks

mark:(Wu,Wv ,Xu,Xv ,Yu,Yv )]s

with
simultanous crossings: (X (s),Y (s)) = (0, 0)

Reference: Azaïs and Wschebor: Level sets and extrema of random
processes and fields, Wiley, 2009.
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The 3D-model and the generalized Rice formula Generalized Rice formula

Application for slope distribution with asynchronous
sampling

Consider u-level crossings at (0, 0) in a specified direction. Slope is defined
as a function of (Wu,Wv ,Xu,Xv ,Yu,Yv )]s . With

N0(A) = #{s ∈ R2;Σ(s) = (0, 0), slope ∈ A}

E (N0(A)) =
∫

R2
E
(
| detΣ′(s)|︸ ︷︷ ︸× 1slope∈A | Σ(s) = (0, 0)

)
fΣ(s)(0, 0) ds︷ ︸︸ ︷

perpendicularitybiascorrection

The expectation is simply obtained by simulation.
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The 3D-model and the generalized Rice formula Generalized Rice formula

Some old literature – still very useful
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The 3D-model and the generalized Rice formula Generalized Rice formula

Lesson to be learned

The ratio between the expected values of marked and unmarked crossings
is equal to the empirical observable distribution.
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Example Six directional spectra

Example specta - Pierson-Moskowitz with different spreading
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Example Asynchrone sampling

Slope PDF across wind and along wind, asynchrone

Top: Large spreading – Bottom: Little spreading
Left: Along wind – Right: Across wind; cf. Cox and Munk
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Example Asynchrone sampling

The Cox and Munk experiment 1951–1954 on wave
asymmetry –

compared to Lagrange asymmetry:

−2 0 2
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Example Synchrone sampling at crossings

Slope CDF for different directional spreading

Left: slope at upcrossings – Right: Slope CDF at downcrossings
Moderate linkage parameter: α = 0.4
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Example Slope depends on main heading

Slope CDF for different heading; Strong linkage: α = 2

Left: slope at upcrossings – Right: Slope CDF at downcrossings

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

slope

c
d
f

θ
0
 = π

θ
0
 = 3π/4

CDF for slope at upcrossings
PM spectrum with  m = 10 

α = 2.0, h = 32m
θ

0
 = 0, ..., π

dashed curve: unidirectional spectrum

θ
0
 = π/2

θ
0
 = π/4

θ
0
 = 0

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

slope
c
d
f

CDF for slope at downcrossings
PM spectrum with  m = 10 

α = 2.0, h = 32m
θ

0
 = 0, ..., π

dashed curve: unidirectional spectrum

θ
0
 = π

θ
0
 = π/4

θ
0
 = 0

θ
0
 = 3π/4

θ
0
 = π/2

Lindgren, Lindgren, Åberg (LU and BATH) Asymmetric Lagrange waves March 2013 37 / 40



Summary and references

Summary

The Gaussian wave model for the free water surface gives
stochastically symmetric waves – trough/crest and front/back
A first order Lagrange model for the move of individual waterparticles
models vertical and horizontal movements as correlated Gaussian
processes
The transfer function between vertical and horizontal movements is
based on hydrodynamic theory with a 90o phase shift
The "free" Lagrange model gives crest/trough asymmetric waves
A modified Lagrange model with frequency dependent phase shift
gives also front/back asymmetry
Distributions of slopes and other wave characteristcs can be found by
the generalized Rice formula
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From all of us to Ross

Thank you for
good theory
good advice
good company

We couldn’t have been lead
better
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