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An experiment 62 years ago

Measurement of the Roughness of the Sea Surface from Photographs
of the Sun’s Glitter

Cuaries Cox AND WALTER MUNK
Seripps Institution of Oceanography,* La Jolla, California
(Received April 28, 1954)
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Introduction

top — across waves

bottom — along waves

compared to Lagrange asymmetry; left — Cox/Munk, right — Lagrange
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Introduction

Proc. Camb. Phil. Soc. (1966), 62, 263 263
PCPS 62-39

Printed in Great Britain

Local maxima of stationary processes

By M. R. LEADBETTER -
Research Triangle Institute, Durham, N. Carolina, U.S8.4.

(Received 15 July 1965)

Abstract. Two natural definitions for the distribution function of the height of an
‘arbitrary local maximum’ of a stationary process are given and shown to be equiva-
lent. It is further shown that the distribution function so defined has the correct
frequency interpretation, for an ergodic process. Explicit results are obtained in the
normal case. :
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[AGLITEIG Y A long time ago

"The correct frequency interpretation”

What is the height of "an arbitrary local maximum" in a stationary
(differentiable) stochastic process X(t) — and what is its distribution?

Answer: The limit of the empirical distribution function as observation
interval grows.
P(height of a local maximum < u)

— Im T~ 14#tlocal maxima in [0, T] with height less than u
T—00 T—14#local maxima in [0, T]

_ E(#{t €[0,1], X'(t) = 0,downcrossing, AND X(t) < u})

N E(#{t € [0,1], X’(t) = 0, downcrossing})

Also David Slepian 1962.
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[AGLITEIG Y A long time ago

Rice formula gives answers

Rice formula gives the expectation of the number of crossings and the

number of "marked" crossings per time unit of a stationary process; explicit
for Gaussian processes.

@ The slope at the instance of upcrossings of any level has a Rayleigh
distribution

@ The height of a local maximum is distributed as
aU++v1—a?R; U~ N(0,1),R ~ Rayleigh

where o measures the width of the energy spectrum
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The Gaussian wave model (1952)

The height W/(t,s) of the water surface at location s at time t is a
Gaussian stationary (homogeneous) random process, expressed as a sum
(integral 1)

W(t,s) = Z Ay cos(kgs — wit + Pi)
k
of moving cosines with
o random amplitudes A,
@ random phases ¢

and with fixed frequencies (1/wave period) and wave numbers (1/wave
length).
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Gauss versus Lagrange

A Gaussian sea is statistically symmetric:

@ the sea surface can be turned upside down

model

@ a wave movie can be run backwards
and you don't see any difference

It needs to be combined with physics/hydrodynamics — gives the Lagrange

=] = = = A
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Why using a stochastic Lagrange model?

o The (linear) Gaussian wave model allows exact computation of
wave characteristic distributions (the WAFO toolbox)

@ produces crest-trough and front-back stochastically symmetric waves

@ The modified stochastic Lagrange model can produce
(2006) crest-trough asymmetric waves (2D)
(2009) front-back asymmetric waves (2D)
(2011) front-back asymmetric waves (3D)

o still allows for exact computation of wave
characteristic distributions

o Software exists for calculation of statistical wave characteristic
distributions (crest, trough heights, period, steepness etc)
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The stochastic 3D Lagrange model

Tom Grace and T
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Circles in deep water, ellipses in shallow water
TASK: Combine Gauss with Google



I 1L LS N U LI The Gaussian generator
Gaussian generator and the orbital spectrum

In the Gaussian model the vertical height W(t,s) of a particle at the free
surface at time t and location s = (u, v) is an integral of harmonics with
random phases and amplitudes:

K= (mx, Ii',y) = k(cosb,sin )

w=w(k) =/ grtanhkh
W@g:/ / e/(5s=1) d(¢(w, 0)

with S(w, 8) = the “orbital spectrum” and ((w, 6) is a Gaussian complex
“spectral process’.

Wave direction = 0
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s L e
The stochastic Lagrange model —

Describes horizontal and vertical movements of individual surface water
particles. Use

W(t,s) = / ("5t ¢ (k, w)

for the vertical movement of a particle with (intitial) reference coordinate
s = (u, v) and write

X(t,s) = <);E;’ 3) = horizontal location at time t

3 (t,s) — s is the horizontal discplacement of a particle from its original
location s
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s L e
— with horizontal Gaussian movements

Use the same (vertical) Gaussian spectral process as in W(t, s) to generate
also the horizontal variation

Fouques,Krogstad,Myrhaug,Socquet-Juglard (2004), Gjgsund (2000,2003)
Aberg, Lindgren, Lindgren (2006,2007,2008,2009,2011), Guerrin (2009)

X(t,s) = <§</Ei: z%) =s+ / H(0, k) oi(ks—wt) d¢(k,w)

where the filter function H depends on water depth h:

H(O. k) = I_cosh kh (cos 9)

sinhkh \sinf
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s L e
The stochastic Lagrange model

The 3D stochastic first order Lagrange wave model is the triple of Gaussian

processes
(W(t,s), Z(t,s)) = (W(t,s), X(t,s), Y(t,s))

All covariance functions and auto-spectral and cross-spectral density
functions for X(t, s) follow from the orbital spectrum S(w, 6) and the filter
equation.

Space wave : keep time coordinate fixed
Time wave : keep space coordinate — (X(t, s), Y(t,s)) — fixed

This will (later) lead us to a "Palm type" problem — what are the
distributions of (W(t,s), Z71(t,(0,0))) when (X(t,s), Y(t,s)) = (0,0),
say.
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s L e
Lagrange 2D space waves, time fixed

A Lagrange space wave at time tg is the parametric curve (2D) or surface

(3D)

L(x): s = (Xm(to,s), W(to,s))
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The stochastic 3D Lagrange model

The free Lagrange waves are peaked —

but they have no preferred direction!
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L i L e
Front-back asymmetric Lagrange waves

To get realistic front-back asymmetry one needs a model with external
input from wind, for example, by a parameter o:

O?X(t,s)  0*°Xu(t,s)
o2 ot

+ aW(t,s)

The filter function from vertical W(t, u) to horizontal X(t, u) is then

.coshkh e}
Hlw) =i sinhkh = (—iw)?

_ p(W) ei@(w)’
Implies an extra phase shift (§ = 7/2 in the free model)

X(t,0) = u+ / i (Eu—tH0) 5(0s) dC (o, )
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Front-back asymmetry

Wavelength: 1m (blue), 5m (green), 50m (red)
Depth = 25meter

Depth = 200meter Depth = 25meter Depth = 200meter
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L i L e
Space and time waves

A Lagrange space wave

5 ‘
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Front-back asymmetry

An example:

(6] COS2 [e{o}}
0.1 = o (il es0)

n .cosh kh
cos?(6) sin(#) sign(cos 0)

to take care of wind blowing in positive x-direction.
spectrum

(cost
sinhkh \sinf )’
Front-back asymmetry depends on directional spreading in the orbital

=] = = = A
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Slivadiiiieg
Explicit definitions — |
The model
(W(t,s), Z(t,s)) = (W(t,s),X(t,s), Y(t,s))
is an implicitly defined model. The space and time models can be made
explicit by

s=Z7'(t,(x,y))

equal to the reference point that is mapped to the observation point (x, y).

Note: There may be many solutions to X(t,s) = (x,y).
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The 3D-model and the generalized Rice formula

Space wave L(to, (x,y)) = W(ty, Z (to, (x,¥)))
= photo of the surface

Time wave L(t,(xo,Y0)) is the parametric curve:

t— W(tv z_l(ta (X07y0)))
= measured at a wave pole

=] = = = A
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Slivadiiiieg
Wave slopes in space (Cox/Munk) and time

The Cox/Munk experiment observed wave slopes at fixed time — needs

space derivatives:
W\ _ (Xu Yu) (Lx
(w) -G ) (&) ®

An oil platform experiences wave slopes at fixed location — needs time
derivatives

L.
We=Li+ (X V2) (L>
y

= we ) (3 %) (%) @)
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The 3D-model and the generalized Rice formula Multiple crossings

Asynchronous sampling in space = Cox/Munch, top =0

To find the distributions of the slopes Ly, L, at a fixed point, say (0,0) ,
invert (1) and find

the distribution of (W, W,, Xy, X,, Y4, Y.) at reference point s
under the condition that (X(s), Y(s)) = (0,0)

250

200

Contour lines prefer to cross under =
straight angles;
"perpendicularitybias”

0 50 100 150 200 250
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The 3D-model and the generalized Rice formula

level u per time unit in a stationary process:

The original Rice formula gives the expected number of level crossings of
E(#{t € [0,1]; X(t) = u, upcrossing})

= E(X'(0)" | X(0) = u) fx(0)(uv)

=] = = = A
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The 3D-model and the generalized Rice formula  BRel e P2 WAL (eI T Y

Marked Rice formula

The Rice formula for marked crossing gives the expectede number of level
crossings per time unit in a stationary process, at which a "mark" has a
certain characteristic. The "mark" can be e.g. the derivative at the
upcrossing.

E(#{t € [0,1]; X(t) = u, upcrossing, and "mark" € B})
= E()</(O)Jr X Iimark" € B ’ X(O) = u) fX(O)(u)
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The 3D-model and the generalized Rice formula  BRel e P2 WAL (eI T Y

Multivariate Rice formula

A generalized (multivariate) Rice formula gives the expected number of
simultaneous crossings with marks, for example with marks

mark:(WL” Wv,Xu7XV7 YIJ7 YV)]S

with
simultanous crossings: (X(s), Y(s)) = (0,0)

Reference: Azals and Wschebor: Level sets and extrema of random
processes and fields, Wiley, 2009.
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The 3D-model and the generalized Rice formula  BRel e P2 WAL (eI T Y

Application for slope distribution with asynchronous
sampling

Consider u-level crossings at (0,0) in a specified direction. Slope is defined
as a function of (W, W,, Xy, Xy, Yu, Yv)]s. With

No(A) = #{s € R%, X(s) = (0,0),slope € A}

E(No(A)) = /Rz E <| det Z/(S)‘ X lsiopecA | X(s) = (0’0)> fZ(s)(Ovo) ds

A

perpendicularitybiascorrection

The expectation is simply obtained by simulation.
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The 3D-model and the generalized Rice formula Generalized Rice formula

Some old literature — still very useful

Proc. Camb. Phil. Soc. (1988), 62, 263 263
PCPS 62-39

Printed in Great Britain
Local maxima of stationary processes

By M. R. LEADBETTER -
Research Triangle Institute, Durham, N. Carolina, U.S.A.

(Received 15 July 1965)

Abstract. Two natural definitions for the distribution function of the height of an
‘arbitrary local maximum’ of a stationary process are given and shown to be equiva-
lent. It is further shown that the distribution function so defined has the correct
frequency interpretation, for an ergodic process. Explicit results are obtained in the
normal case.
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The 3D-model and the generalized Rice formula

The ratio between the expected values of marked and unmarked crossings
is equal to the empirical observable distribution.
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N _ . Ll Six directional spectra

Example specta - Pierson-Moskowitz with different spreading

Directional Spectrum Directional Spectrum Directional Spectrum

Directional Spectrum Directional Spectrum
0.2 N2
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Example

Top: Large spreading — Bottom: Little spreading
Left: Along wind — Right: Across wind; cf. Cox and Munk
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Example

compared to Lagrange asymmetry:
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w Synchrone sampling at crossings
Slope CDF for different directional spreading

Left: slope at upcrossings — Right: Slope CDF at downcrossings
Moderate linkage parameter: o = 0.4

1 > 1 e
= ="
‘O ‘ 7 e
4
0.8r A . 0.8f
v "
/o g
/o g
4 /o
0.6 A 1 08f Z
— v u— ol
E ' 3
0.4t 1 0.4
PM spectrum, slope at upcrossings ' PM spectrum, slope at downcrossings
o=04,h=32m o = 0.4, h=32m
0_2 L solid curves: m =0, 2, 5, 10, 20, 120 4 0_2 L solid curves: m=0, 2, 5, 10, 20, 120
dashed curve: unidirectional spectrum dashed curve: unidirectional spectrum
0 | | 0 | |
0 0.2 0.4 0.6 0 0.2 0.4 0.6
slope slope
ndgren, Lindgren, Aberg (LU and BAT March 2013 36 / 40




N _ . L} Slope depends on main heading

Slope CDF for different heading; Strong linkage: o = 2

Left: slope at upcrossings — Right: Slope CDF at downcrossings
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Summary and references

Summary

@ The Gaussian wave model for the free water surface gives
stochastically symmetric waves — trough/crest and front/back

o A first order Lagrange model for the move of individual waterparticles
models vertical and horizontal movements as correlated Gaussian
processes

@ The transfer function between vertical and horizontal movements is
based on hydrodynamic theory with a 90° phase shift

@ The "free" Lagrange model gives crest/trough asymmetric waves

o A modified Lagrange model with frequency dependent phase shift
gives also front/back asymmetry

@ Distributions of slopes and other wave characteristcs can be found by
the generalized Rice formula
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Summary and references

Thank you for
o good theory
e good advice

e good company

We couldn't have been lead
better
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