Multivariate tail representations

Jenny Wadsworth

Ecole Polytechnique Fédérale de Lausanne, Switzerland
Joint work with: Jonathan Tawn, Lancaster University, UK

Symposium on Recent Advances in Extreme Value Theory honoring Ross Leadbetter
Lisbon, March 2013

Motivation

- Goal: estimate $\mathrm{P}(\mathbf{X} \in B)$
- Method: Link $\mathbf{P}(\mathbf{X} \in B)$ to $\mathrm{P}(\mathbf{X} \in A)$ exploiting decay structure of extreme events

- Theoretical characterizations allow extrapolation of multivariate tail
- No natural direction of extrapolation in multivariate space

Approaches to multivariate extremes

- Interested in the extremes of a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$
- What is the multivariate tail of \mathbf{X} ?

Approaches:
(1) All components extreme

- Asymptotic dependence
- Asymptotic independence
(2) At least one component extreme

This talk

- Review some existing representations
- Explore an alternative one

Notation

Focus on $d=2$. Define
$\left(X_{P}, Y_{P}\right) \quad$ Pareto(1)
$\mathrm{P}\left(X_{P}>x\right)=x^{-1}$
$\left(X_{E}, Y_{E}\right) \quad$ Exponential(1)
$\mathrm{P}\left(X_{E}>x\right)=e^{-x}$

Joint distribution / survivor functions:

$$
\begin{aligned}
& F_{P}(x, y):=\mathrm{P}\left(X_{P} \leq x, Y_{P} \leq y\right) \\
& \bar{F}_{P}(x, y):=\mathrm{P}\left(X_{P}>x, Y_{P}>y\right)
\end{aligned}
$$

All components extreme

- Study the behaviour of $\left(X_{P}, Y_{P}\right)$ as they grow at the same rate
- i.e. what can we say about

$$
F_{P}(n x, n y)
$$

or

$$
\bar{F}_{P}(n x, n y)
$$

as $n \rightarrow \infty$?

- Key is assumption of multivariate regular variation de Haan and Resnick (1977); Ledford and Tawn (1997)

All components extreme

Limiting extremal dependence described by

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[1-F_{P}(n x, n y)\right] & =\lim _{n \rightarrow \infty} n\left[(n x)^{-1}+(n y)^{-1}-\bar{F}_{P}(n x, n y)\right] \\
& =V(x, y)
\end{aligned}
$$

$V(x, y)$ homogeneous order -1 .
Asymptotic dependence if

$$
\lim _{n \rightarrow \infty} n \bar{F}_{P}(n x, n y)>0
$$

Asymptotic independence if

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \bar{F}_{P}(n x, n y) & =0, \text { i.e. } \\
\lim _{n \rightarrow \infty} n\left[1-F_{P}(n x, n y)\right] & =x^{-1}+y^{-1}
\end{aligned}
$$

All components extreme: asymptotic independence

Limit tells us nothing:

$$
\lim _{n \rightarrow \infty} n \bar{F}_{P}(n x, n y)=0
$$

Sub-asymptotic theory gives rate of convergence to zero limit:

$$
\bar{F}_{P}(n x, n y)=n^{-1 / \eta} L(n x, n y)(x y)^{-1 / 2 \eta}
$$

- $\eta \in(0,1]$ coefficient of tail dependence
- $L(x, y)$ bivariate slowly varying: $\lim _{n \rightarrow \infty} L(n x, n y) / L(n, n)=g(x, y)$, homogeneous order 0.
Ledford and Tawn (1996, Bka; 1997, JRSSB); Resnick (2002, Extremes); Ramos and Ledford (2009, JRSSB)

Extrapolation strategies: all components extreme

Assumption gives asymptotic link between probabilities:

$$
\begin{aligned}
\mathrm{P}\left\{\left(X_{P}, Y_{P}\right) \in t n A\right\} & \sim t^{-1 / \eta} \mathrm{P}\left\{\left(X_{P}, Y_{P}\right) \in n A\right\} \\
\mathrm{P}\left\{\left(X_{E}, Y_{E}\right) \in t+n+A\right\} & \sim \exp \{-t / \eta\} \mathrm{P}\left\{\left(X_{E}, Y_{E}\right) \in n+A\right\}
\end{aligned}
$$

(Asymptotic dependence if $\eta=1$). i.e. extrapolate on

- rays emanating from the origin in Pareto margins
- lines parallel to the diagonal in exponential margins

Weakness of this approach

Need for alternatives

- May not have large values of X occurring with large values of Y
- Theories where we break away from the idea of both components growing at the same rate can lead to different extrapolation strategies

One component extreme: conditional extremes

- Let one component (Y, say) be extreme: how should X grow in relation to get an interesting limit?

Assume there exist normalisation functions a, b s.t.

$$
\mathrm{P}\left(\frac{X_{E}-b\left(Y_{E}\right)}{a\left(Y_{E}\right)} \leq x, Y_{E}-z>y \mid Y_{E}>z\right) \rightarrow H(x) \exp \{-y\}
$$

as $z \rightarrow \infty$, where H is a non-degenerate distribution function.

- Pro: Assumption holds widely; extrapolate according to form of a, b
- Con: Do not know a, b or H : statistical estimation necessary, inference messy
Heffernan and Tawn (2004, JRSSB); Heffernan and Resnick (2007, Ann. App. Prob.)

Extrapolation strategies: one component extreme

Alternative asymptotic theory

Different trajectories from different theories. In exponential margins:

Alternative asymptotic theory

Different trajectories from different theories. In exponential margins:

Alternative: some components more extreme than others

- fix different growth rates of X, Y
- examine induced joint tail probability decay rate. Focus on

$$
\bar{F}_{P}\left(n^{\beta}, n^{\gamma}\right) \equiv \bar{F}_{E}(\beta \log n, \gamma \log n), \quad \beta, \gamma \geq 0, \beta \wedge \gamma>0
$$

Different marginal growth rates

Basic assumption

For all $\beta, \gamma \geq 0, \beta \wedge \gamma>0$,

$$
\bar{F}_{P}\left(n^{\beta}, n^{\gamma}\right)=n^{-\kappa(\beta, \gamma)} L(n ; \beta, \gamma)
$$

as $n \rightarrow \infty$.

- $\kappa(\beta, \gamma)$ homogeneous of order 1. Maps different marginal growth rates to joint tail decay rate
- $L(n ; \beta, \gamma)$ univariate slowly varying in n for all $\beta, \gamma \geq 0, \beta \wedge \gamma>0$: $\lim _{n \rightarrow \infty} L(n t ; \beta, \gamma) / L(n ; \beta, \gamma)=1$

Different marginal growth rates: exploiting homogeneity

Basic assumption

For all $\beta, \gamma \geq 0, \beta \wedge \gamma>0$,

$$
\bar{F}_{P}\left(n^{\beta}, n^{\gamma}\right)=n^{-\kappa(\beta, \gamma)} L(n ; \beta, \gamma)
$$

as $n \rightarrow \infty$.

- Homogeneity of κ : only relative marginal growth rates relevant
- Let $\omega \in[0,1]$. Define $\lambda(\omega):=\kappa(\omega, 1-\omega)$, termed angular dependence function

$$
\bar{F}_{P}\left(n^{\omega}, n^{1-\omega}\right)=n^{-\lambda(\omega)} L(n ; \omega, 1-\omega) .
$$

Regular variation

- Key idea (as ever) is regular variation
- Assume a univariate regular variation condition to study multivariate tails
- Let $T_{\omega}:[1, \infty) \mapsto[1, \infty)^{2}$ be given by $T_{\omega}(x)=\left(x^{\omega}, x^{1-\omega}\right)$. Then we study \bar{F}_{P} such that

$$
\bar{F}_{P} \circ T_{\omega}(n) \in R V_{-\lambda(\omega)}
$$

- Replace single multivariate regular variation condition by whole class of univariate ones

Some properties of λ

- Marginal condition: $\lambda(0)=\lambda(1)=1$
- Range under non-negative association of (X, Y) :

$$
\max \{\omega, 1-\omega\} \leq \lambda(\omega) \leq 1
$$

- Independence: $\lambda(\omega)=1$
- Asymptotic dependence: $\lambda(\omega)=\max \{\omega, 1-\omega\}$
- Coefficient of tail dependence: $\eta^{-1}=2 \lambda(1 / 2)$

More on λ

- λ plays a role like Pickands' dependence function,

$$
A(w):=V\left(\frac{1}{1-w}, \frac{1}{w}\right)
$$

but for asymptotically independent distributions

- $\lambda(\omega) \equiv \max \{\omega, 1-\omega\}$ when $A(w)$ takes 'interesting' forms (asymptotic dependence)
- $A(w) \equiv 1$ when λ takes 'interesting' forms (asymptotic independence)
- Convexity of λ entails an additional dependence condition

Examples

Bivariate normal

$$
\lambda(\omega)= \begin{cases}\frac{1-2 \rho \omega^{1 / 2}(1-\omega)^{1 / 2}}{}, & \rho^{2}<\min \left\{\frac{\omega}{1-\omega}, \frac{1-\omega}{\omega}\right\} \\ \max \{\omega, 1-\omega\}, & \text { otherwise }\end{cases}
$$

Examples

Lower joint tail of MV extreme value distribution
$\lambda(\omega)=V(1 / \omega, 1 / 1-\omega)=A(1-\omega) \quad$ [A: Pickands' dependence function]
Morgenstern
$\lambda(\omega)=1$

Extrapolation strategies: some components extreme

- Focus on joint survivor set
- As $v \rightarrow \infty$,

$$
\mathrm{P}\left\{X_{E}>\omega(t+v), Y_{E}>(1-\omega)(t+v)\right\} \sim \exp \{-\lambda(\omega) t\} \mathrm{P}\left\{X_{E}>\omega v, Y_{E}>(1-\omega) v\right\}
$$

Extrapolate upon rays emanating from the origin in exponential margins

Advantage

Estimating $\lambda(\omega)$

- Estimation of $\lambda(\omega)$ key to estimation of any probability on ray ω
- Regularly varying tail: use Hill estimator

Let $Z_{\omega}=\min \left\{\frac{X_{E}}{\omega}, \frac{Y_{E}}{1-\omega}\right\}$, then

$$
\mathrm{P}\left(Z_{\omega}>\log n+\log x\right)=L(n x ; \omega, 1-\omega)(n x)^{-\lambda(\omega)}, \quad n \rightarrow \infty
$$

- For $k+1$ top order statistics of $Z_{\omega}, z_{(1)}, \ldots, z_{(k+1)}$:

$$
\hat{\lambda}(\omega)=\left(\frac{1}{k} \sum_{i=1}^{k}\left(z_{(i)}-z_{(k+1)}\right)\right)^{-1}
$$

Example estimated $\lambda(\omega)$

Bivariate normal
(a)

Inverted extreme value logistic
(b)

- $\eta=0.75$ in each case
- Solid line: true; dashed / dotted lines: pointwise mean and 95\% Cl from 500 repetitions
- SV function affects finite sample estimation for bivariate normal

Estimation quality

- How well can we estimate probabilities in different parts of the quadrant?
- Evaluate methods of: Ledford and Tawn, Heffernan and Tawn, and current method for $\omega \in\{0.05,0.1, \ldots, 0.5\}$

Estimation quality

Ledford and Tawn (L), Heffernan and Tawn (H), and current method (W)

Multivariate theory

Can we develop an asymptotic link between more general sets than joint survivor?

Consider

$$
\bar{F}_{P}\left(n^{\omega} x, n^{1-\omega} y\right)
$$

as $n \rightarrow \infty$.

Some theoretical progress possible with assumptions:
(1) κ differentiable at $(\omega, 1-\omega)$
(2) $\lim _{n \rightarrow \infty} \frac{L\left(n ; \omega+\frac{\log x}{\log n}, 1-\omega+\frac{\log y}{\log n}\right)}{L(n ; \omega, 1-\omega)}=1$

Multivariate theory

Convergence of conditional probability under these assumptions:

$$
\mathrm{P}\left(X_{P}>n^{\omega} x, Y_{P}>n^{1-\omega} y \mid X_{P}>n^{\omega}, Y_{P}>n^{1-\omega}\right) \rightarrow x^{-\kappa_{1}(\omega)} y^{-\kappa_{2}(\omega)}
$$

$x, y \geq 1$

- $\kappa_{1}, \kappa_{2} \geq 0$ are partial derivatives of κ, evaluated at $(\omega, 1-\omega)$
- $\kappa_{1}=\lambda(\omega)+(1-\omega) \lambda^{\prime}(\omega) ; \kappa_{2}=\lambda(\omega)-\omega \lambda^{\prime}(\omega)$
- stochastically independent limit, with parameters determined by form of finite-level dependence

Multivariate theory

Multivariate theory

General form of convergence

$$
\mathrm{P}\left\{\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in \cdot \left\lvert\,\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in[1, \infty)^{2}\right.\right\} \xrightarrow{\omega} \pi(\cdot ; \omega)
$$

- Limit measure $\pi(\cdot ; \omega)$ homogeneous of order $-\left\{\kappa_{1}(\omega)+\kappa_{2}(\omega)\right\}$

Multivariate theory

General form of convergence

$$
\mathrm{P}\left\{\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in \cdot \left\lvert\,\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in[1, \infty)^{2}\right.\right\} \xrightarrow{\omega} \pi(\cdot ; \omega)
$$

- Limit measure $\pi(\cdot ; \omega)$ homogeneous of order $-\left\{\kappa_{1}(\omega)+\kappa_{2}(\omega)\right\}$
- Provides asymptotic link between Borel sets $B \subset[1, \infty)^{2}$

$$
\begin{aligned}
& \mathrm{P}\left\{\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in\left(t^{\omega}, t^{1-\omega}\right) B\right\} \sim t^{-\lambda(\omega)} \mathrm{P}\left\{\left(\frac{X_{P}}{n^{\omega}}, \frac{Y_{P}}{n^{1-\omega}}\right) \in B\right\} \\
& t>1
\end{aligned}
$$

- Follows since

$$
\omega \kappa_{1}(\omega)+(1-\omega) \kappa_{2}(\omega)=\kappa(\omega, 1-\omega)=\lambda(\omega)
$$

by homogeneity

Multivariate theory: assumptions

- Assumptions of differentiable κ and smoothness of L do not hold under asymptotic dependence when $\omega=1 / 2$
- Here,

$$
\mathrm{P}\left(X_{P}>n^{1 / 2} x, Y_{P}>n^{1 / 2} y \mid X_{P}>n^{1 / 2}, Y_{P}>n^{1 / 2}\right)
$$

\rightarrow

$$
\frac{x^{-1}+y^{-1}-V(x, y)}{2-V(1,1)}
$$

as $n \rightarrow \infty$.

- All results can be combined under a generalized notion of multivariate regular variation of the random vector

Back to multivariate regular variation

- Define the bijective map $U_{\omega}:(1, \infty)^{2} \mapsto(1, \infty)^{2}$ by

$$
U_{\omega}(x, y)=\left(x^{\omega}, y^{1-\omega}\right)
$$

for any fixed $\omega \in(0,1)$

- Assume $\bar{F}_{P} \circ U_{\omega}$ is multivariate regularly varying of index $-\lambda(\omega)$

Back to multivariate regular variation

- Define the bijective map $U_{\omega}:(1, \infty)^{2} \mapsto(1, \infty)^{2}$ by

$$
U_{\omega}(x, y)=\left(x^{\omega}, y^{1-\omega}\right)
$$

for any fixed $\omega \in(0,1)$

- Assume $\bar{F}_{P} \circ U_{\omega}$ is multivariate regularly varying of index $-\lambda(\omega)$
- Equivalently: standard multivariate regular variation of the law of the random vector $U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right)=\left(X_{P}^{1 / \omega}, Y_{P}^{1 /(1-\omega)}\right), \omega \in(0,1)$

$$
\mathrm{P}\left\{U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right) / n \in \cdot \mid U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right) / n \in[1, \infty)^{2}\right\} \xrightarrow{w} \pi^{*}(\cdot ; \omega)
$$

- $\pi^{*}(c B ; \omega)=c^{-\lambda(\omega)} \pi^{*}(B ; \omega)$, for Borel $B \subset(1, \infty)^{2}, c>0$.

Generalizing the scaling

- In place of conditional probability can generalize the scaling
- We can find $a(n) \in R V_{1 / \lambda(\omega)}$ such that for Borel $B \subset(1, \infty)^{2}$,

$$
\lim _{n \rightarrow \infty} n \mathrm{P}\left\{U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right) / a(n) \in B\right\}=\pi^{*}(B ; \omega)
$$

with $\pi^{*}(\partial B)=0$ and π^{*} as previous slide.

- If \bar{H}_{ω} is the survivor function of $\min \left\{U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right)\right\}$ then take $a(n)=\left(1 / \bar{H}_{\omega}\right) \leftarrow(n)$
- For $\omega=1 / 2$ we recognize this as standard multivariate regular variation; $a(n) \in R V_{1 / 2 \eta}$
- Extension for $\omega \neq 1 / 2$, under additional assumptions

Multivariate theory: consequences

- In theory multivariate case opens up links between $\mathrm{P}(\mathbf{X} \in B)$ and $\mathrm{P}(\mathbf{X} \in A)$ for general A, B
- How best to exploit? Which ω ? Depends on shape of set, extrapolation direction, ...?

Links to existing theory

Natural link to the 'all components extreme' approach:

- Assume (a version of) the existing regular variation theory holds for transformed variables

$$
\left(X_{P}^{1 / \omega}, Y_{P}^{1 /(1-\omega)}\right) \quad \text { or equivalently } \quad\left(X_{E} / \omega, Y_{E} /(1-\omega)\right)
$$

- Univariate regular variation condition:

Ledford \& Tawn (1996) : $\bar{F}_{P}(n, n) \in R V_{-1 / \eta}$

$$
\text { Here : } \bar{F}_{P \circ} T_{\omega}(n, n) \in R V_{-\lambda(\omega)}
$$

- Multivariate regular variation condition:

$$
\begin{array}{r}
\text { Ledford \& Tawn (1997) : } \bar{F}_{P}(n x, n y) \text { MVRV index }-1 / \eta \\
\text { Here }: \bar{F}_{P \circ} U_{\omega}(n x, n y) \text { MVRV index }-\lambda(\omega)
\end{array}
$$

Links to existing theory

- Ramos and Ledford (2009) explore limits of the type

$$
\mathrm{P}\left(X_{P}>n x, Y_{P}>n y \mid X_{P}>n, Y_{P}>n\right) \rightarrow g(x, y)(x y)^{-1 / 2 \eta}
$$

- There, the focus is on characterization of $g(x, y)$, or equivalently the hidden angular measure H_{η}
- Analogous to characterization of $\pi^{*}(B ; 1 / 2)$ in

$$
\lim _{n \rightarrow \infty} n \mathrm{P}\left\{U_{\omega}^{\leftarrow}\left(X_{P}, Y_{P}\right) / a(n) \in B\right\}=\pi^{*}(B ; \omega)
$$

for both asymptotically dependent and asymptotically independent possibilities

Links to existing theory

Link to conditional limit theory? A much more modest connection...

$$
\mathrm{P}\left(X_{P}>\beta \log n \mid Y_{P}>\log n\right)=L(n ; \beta, 1) \exp \{-[\kappa(\beta, 1)-1] \log n\}
$$

- Some smoothness conditions required as β becomes $\beta(n, x)$
- Limit depends on the behaviour of the SV function $L(n ; \omega, 1-\omega)$ as $\omega \rightarrow 0$ or $\omega \rightarrow 1$
- Full link requires further characterization / assumptions on L

Higher dimensions

- Representation extends to d-dimensions: for $\boldsymbol{\omega} \in S_{d-1}$: with

$$
\begin{aligned}
S_{d-1}:=\{\mathbf{v} & \left.\in[0,1]^{d}: \sum_{i=1}^{d} v_{i}=1\right\} \\
& \bar{F}_{P}\left(n^{\omega_{1}}, \ldots, n^{\omega_{d}}\right)=L(n ; \omega) n^{-\lambda(\omega)}, \quad n \rightarrow \infty .
\end{aligned}
$$

- Complication as always is the number of different orders that can arise with

$$
\bar{F}_{P}\left(n x_{1}, n x_{2}\right), \quad \bar{F}_{P}\left(n x_{1}, n x_{3}\right), \quad \bar{F}_{P}\left(n x_{2}, n x_{3}\right), \quad \bar{F}_{P}\left(n x_{1}, n x_{2}, n x_{3}\right), \ldots
$$

- Ideal: a representation we can estimate in all d dimensions, which provides accurate inference for all lower dimensions
- Challenging without simplifying assumptions on asymptotic (in)dependence of different orders

To summarize

- Alternative asymptotic theories lead to different extrapolation directions
- Theory based upon margins growing at different rates offers alternative direction to previous theories

- Simple univariate regular variation condition gives theory for extrapolating joint survivor sets
- Some multivariate theory available with additional assumptions

Thanks for your attention!

