Multivariate tail representations

Jenny Wadsworth

Ecole Polytechnique Fédérale de Lausanne, Switzerland

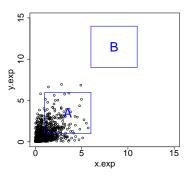
Joint work with: Jonathan Tawn, Lancaster University, UK

Symposium on Recent Advances in Extreme Value Theory honoring Ross Leadbetter

Lisbon, March 2013

Motivation

- Goal: estimate $P(X \in B)$
- Method: Link $P(\mathbf{X} \in B)$ to $P(\mathbf{X} \in A)$ exploiting decay structure of extreme events



- Theoretical characterizations allow extrapolation of multivariate tail
- No natural direction of extrapolation in multivariate space

Approaches to multivariate extremes

- Interested in the extremes of a random vector $\mathbf{X} = (X_1, \dots, X_d)$
- What is the multivariate tail of X?

Approaches:

- All components extreme
 - Asymptotic dependence
 - Asymptotic independence
- At least one component extreme

This talk

- Review some existing representations
- Explore an alternative one

Notation

Focus on d = 2. Define

$$(X_P, Y_P)$$
 Pareto(1) $P(X_P > x) = x^{-1}$ (X_E, Y_E) Exponential(1) $P(X_E > x) = e^{-x}$

Joint distribution / survivor functions:

$$F_P(x, y) := P(X_P \le x, Y_P \le y)$$

 $\bar{F}_P(x, y) := P(X_P > x, Y_P > y)$

All components extreme

- Study the behaviour of (X_P, Y_P) as they grow at the same rate
- i.e. what can we say about

$$F_P(nx, ny)$$

or

$$\bar{F}_P(nx, ny)$$

as $n \to \infty$?

Key is assumption of multivariate regular variation
 de Haan and Resnick (1977); Ledford and Tawn (1997)

All components extreme

Limiting extremal dependence described by

$$\lim_{n \to \infty} n[1 - F_P(nx, ny)] = \lim_{n \to \infty} n[(nx)^{-1} + (ny)^{-1} - \bar{F}_P(nx, ny)]$$
$$= V(x, y)$$

V(x, y) homogeneous order -1.

Asymptotic dependence if

$$\lim_{n\to\infty} n\bar{F}_P(nx,ny) > 0$$

Asymptotic independence if

$$\lim_{n\to\infty} n\bar{F}_P(nx,ny) = 0, \text{i.e.}$$

$$\lim_{n\to\infty} n[1 - F_P(nx,ny)] = x^{-1} + y^{-1}.$$

All components extreme: asymptotic independence

Limit tells us nothing:

$$\lim_{n\to\infty} n\bar{F}_P(nx,ny) = 0.$$

Sub-asymptotic theory gives rate of convergence to zero limit:

$$\bar{F}_P(nx, ny) = n^{-1/\eta} L(nx, ny)(xy)^{-1/2\eta}$$

- $\eta \in (0,1]$ coefficient of tail dependence
- L(x, y) bivariate slowly varying: $\lim_{n\to\infty} L(nx, ny)/L(n, n) = g(x, y)$, homogeneous order 0.

Ledford and Tawn (1996, Bka; 1997, JRSSB); Resnick (2002, Extremes); Ramos and Ledford (2009, JRSSB)

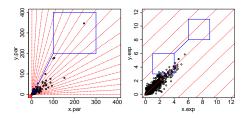
Extrapolation strategies: all components extreme

Assumption gives asymptotic link between probabilities:

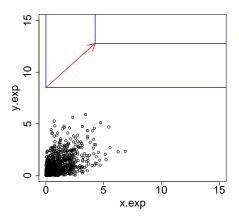
$$\begin{split} & \mathsf{P}\{(X_P,Y_P) \in t n A\} \ \sim \ t^{-1/\eta} \mathsf{P}\{(X_P,Y_P) \in n A\} \\ & \mathsf{P}\{(X_E,Y_E) \in t + n + A\} \ \sim \ \exp\{-t/\eta\} \mathsf{P}\{(X_E,Y_E) \in n + A\} \end{split}$$

(Asymptotic dependence if $\eta = 1$). i.e. extrapolate on

- rays emanating from the origin in Pareto margins
- lines parallel to the diagonal in exponential margins



Weakness of this approach



Need for alternatives

- May not have large values of X occurring with large values of Y
- Theories where we break away from the idea of both components growing at the same rate can lead to different extrapolation strategies

One component extreme: conditional extremes

• Let one component (Y, say) be extreme: how should X grow in relation to get an interesting limit?

Assume there exist normalisation functions a, b s.t.

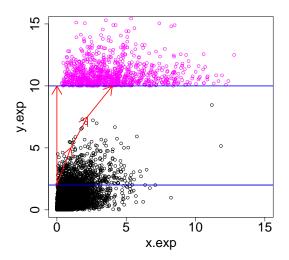
$$\mathsf{P}\left(\left.\frac{X_E-b(Y_E)}{a(Y_E)} \le x, Y_E-z > y\right| Y_E > z\right) \to H(x) \exp\{-y\},$$

as $z \to \infty$, where H is a non-degenerate distribution function.

- Pro: Assumption holds widely; extrapolate according to form of a, b
- Con: Do not know *a*, *b* or *H*: statistical estimation necessary, inference messy

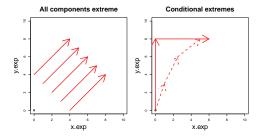
Heffernan and Tawn (2004, JRSSB); Heffernan and Resnick (2007, Ann. App. Prob.)

Extrapolation strategies: one component extreme



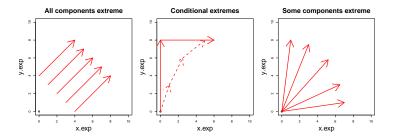
Alternative asymptotic theory

Different trajectories from different theories. In exponential margins:



Alternative asymptotic theory

Different trajectories from different theories. In exponential margins:



Alternative: some components more extreme than others

- fix different growth rates of X, Y
- examine induced joint tail probability decay rate. Focus on

$$\bar{F}_{P}(n^{\beta}, n^{\gamma}) \equiv \bar{F}_{E}(\beta \log n, \gamma \log n), \quad \beta, \gamma \geq 0, \beta \wedge \gamma > 0$$

Different marginal growth rates

Basic assumption

For all $\beta, \gamma \geq 0$, $\beta \wedge \gamma > 0$,

$$\bar{F}_P(n^{\beta}, n^{\gamma}) = n^{-\kappa(\beta, \gamma)} L(n; \beta, \gamma)$$

as $n \to \infty$.

- $\kappa(\beta, \gamma)$ homogeneous of order 1. Maps different marginal growth rates to joint tail decay rate
- $L(n; \beta, \gamma)$ univariate slowly varying in n for all $\beta, \gamma \ge 0, \beta \land \gamma > 0$: $\lim_{n \to \infty} L(nt; \beta, \gamma)/L(n; \beta, \gamma) = 1$

Different marginal growth rates: exploiting homogeneity

Basic assumption

For all $\beta, \gamma \geq 0$, $\beta \wedge \gamma > 0$,

$$\bar{F}_P(n^{\beta}, n^{\gamma}) = n^{-\kappa(\beta, \gamma)} L(n; \beta, \gamma)$$

as $n \to \infty$.

- Homogeneity of κ : only relative marginal growth rates relevant
- Let $\omega \in [0,1]$. Define $\lambda(\omega) := \kappa(\omega, 1-\omega)$, termed angular dependence function

$$\bar{F}_P(n^\omega, n^{1-\omega}) = n^{-\lambda(\omega)} L(n; \omega, 1-\omega).$$

Regular variation

- Key idea (as ever) is regular variation
- Assume a univariate regular variation condition to study multivariate tails
- Let $T_{\omega}: [1,\infty) \mapsto [1,\infty)^2$ be given by $T_{\omega}(x) = (x^{\omega}, x^{1-\omega})$. Then we study \bar{F}_P such that

$$\bar{F}_P \circ T_\omega(n) \in RV_{-\lambda(\omega)}$$

 Replace single multivariate regular variation condition by whole class of univariate ones

Some properties of λ

- Marginal condition: $\lambda(0) = \lambda(1) = 1$
- Range under non-negative association of (X, Y):

$$\max\{\omega, 1 - \omega\} \le \lambda(\omega) \le 1$$

- Independence: $\lambda(\omega) = 1$
- Asymptotic dependence: $\lambda(\omega) = \max\{\omega, 1 \omega\}$
- Coefficient of tail dependence: $\eta^{-1} = 2\lambda(1/2)$

More on λ

ullet λ plays a role like Pickands' dependence function,

$$A(w) := V\left(\frac{1}{1-w}, \frac{1}{w}\right),\,$$

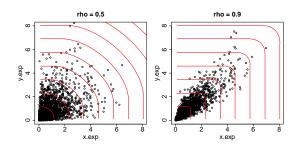
but for asymptotically independent distributions

- $\lambda(\omega) \equiv \max\{\omega, 1 \omega\}$ when A(w) takes 'interesting' forms (asymptotic dependence)
- $A(w) \equiv 1$ when λ takes 'interesting' forms (asymptotic independence)
- ullet Convexity of λ entails an additional dependence condition

Examples

Bivariate normal

$$\lambda(\omega) = \left\{ \begin{array}{l} \frac{1 - 2\rho\omega^{1/2}(1 - \omega)^{1/2}}{(1 - \rho^2)}, & \rho^2 < \min\left\{\frac{\omega}{1 - \omega}, \frac{1 - \omega}{\omega}\right\} \\ \max\{\omega, 1 - \omega\}, & \text{otherwise} \end{array} \right.$$



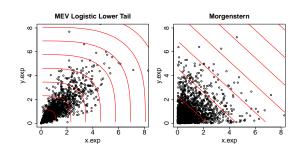
Examples

Lower joint tail of MV extreme value distribution

$$\lambda(\omega) = V(1/\omega, 1/1 - \omega) = A(1 - \omega)$$
 [A: Pickands' dependence function]

Morgenstern

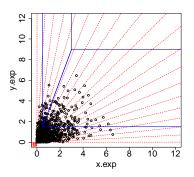
$$\lambda(\omega) = 1$$



Extrapolation strategies: some components extreme

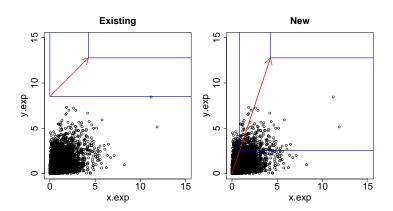
- Focus on joint survivor set
- As $v \to \infty$,

$$\mathsf{P}\{X_E > \omega(t+v), Y_E > (1-\omega)(t+v)\} \sim \exp\{-\lambda(\omega)t\} \mathsf{P}\{X_E > \omega v, Y_E > (1-\omega)v\}$$



Extrapolate upon rays emanating from the origin in exponential margins

Advantage



Estimating $\lambda(\omega)$

- ullet Estimation of $\lambda(\omega)$ key to estimation of any probability on ray ω
- Regularly varying tail: use Hill estimator

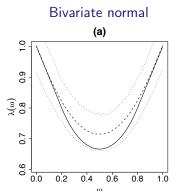
Let
$$Z_{\omega} = \min\left\{\frac{X_{E}}{\omega}, \frac{Y_{E}}{1-\omega}\right\}$$
, then

$$P(Z_{\omega} > \log n + \log x) = L(nx; \omega, 1 - \omega)(nx)^{-\lambda(\omega)}, \quad n \to \infty$$

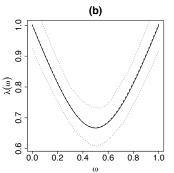
• For k+1 top order statistics of Z_{ω} , $z_{(1)}, \ldots, z_{(k+1)}$:

$$\hat{\lambda}(\omega) = \left(\frac{1}{k} \sum_{i=1}^{k} (z_{(i)} - z_{(k+1)})\right)^{-1}$$

Example estimated $\lambda(\omega)$



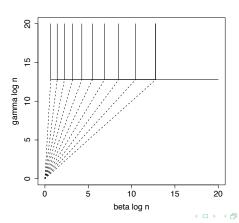
Inverted extreme value logistic



- $\eta = 0.75$ in each case
- Solid line: true; dashed / dotted lines: pointwise mean and 95% CI from 500 repetitions
- SV function affects finite sample estimation for bivariate normal

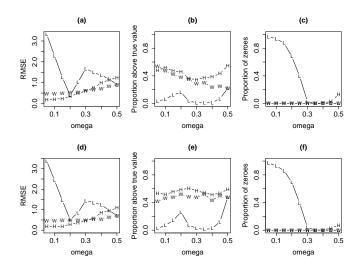
Estimation quality

- How well can we estimate probabilities in different parts of the quadrant?
- Evaluate methods of: Ledford and Tawn, Heffernan and Tawn, and current method for $\omega \in \{0.05, 0.1, \dots, 0.5\}$



Estimation quality

Ledford and Tawn (L), Heffernan and Tawn (H), and current method (W)



Can we develop an asymptotic link between more general sets than joint survivor?

Consider

$$\bar{F}_P(n^\omega x, n^{1-\omega}y)$$

as $n \to \infty$.

Some theoretical progress possible with assumptions:

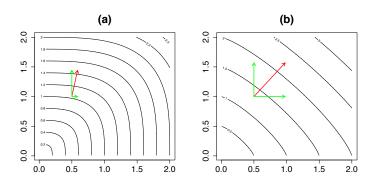
- κ differentiable at $(\omega, 1 \omega)$
- $\text{ lim}_{n \to \infty} \, \frac{L\left(n; \omega + \frac{\log x}{\log n}, 1 \omega + \frac{\log y}{\log n}\right)}{L\left(n; \omega, 1 \omega\right)} = 1$

Convergence of conditional probability under these assumptions:

$$P(X_P > n^{\omega} x, Y_P > n^{1-\omega} y \mid X_P > n^{\omega}, Y_P > n^{1-\omega}) \rightarrow x^{-\kappa_1(\omega)} y^{-\kappa_2(\omega)},$$

$$x, y \ge 1.$$

- $\kappa_1, \kappa_2 \geq 0$ are partial derivatives of κ , evaluated at $(\omega, 1 \omega)$
- $\kappa_1 = \lambda(\omega) + (1 \omega)\lambda'(\omega); \quad \kappa_2 = \lambda(\omega) \omega\lambda'(\omega)$
- stochastically independent limit, with parameters determined by form of finite-level dependence



General form of convergence

$$\mathsf{P}\left\{\left(\frac{X_P}{n^\omega}, \frac{Y_P}{n^{1-\omega}}\right) \in \cdot \left| \left(\frac{X_P}{n^\omega}, \frac{Y_P}{n^{1-\omega}}\right) \in [1, \infty)^2 \right.\right\} \xrightarrow{w} \pi(\cdot; \omega)$$

• Limit measure $\pi(\cdot; \omega)$ homogeneous of order $-\{\kappa_1(\omega) + \kappa_2(\omega)\}$

General form of convergence

$$\mathsf{P}\left\{\left(\frac{X_P}{n^\omega},\frac{Y_P}{n^{1-\omega}}\right)\in\cdot\left|\left(\frac{X_P}{n^\omega},\frac{Y_P}{n^{1-\omega}}\right)\in[1,\infty)^2\right.\right\}\xrightarrow{w}\pi(\cdot;\omega)$$

- Limit measure $\pi(\cdot;\omega)$ homogeneous of order $-\{\kappa_1(\omega) + \kappa_2(\omega)\}$
- Provides asymptotic link between Borel sets $B \subset [1,\infty)^2$

$$P\left\{\left(\frac{X_P}{n^{\omega}}, \frac{Y_P}{n^{1-\omega}}\right) \in (t^{\omega}, t^{1-\omega})B\right\} \sim t^{-\lambda(\omega)}P\left\{\left(\frac{X_P}{n^{\omega}}, \frac{Y_P}{n^{1-\omega}}\right) \in B\right\},\,$$

t > 1.

Follows since

$$\omega \kappa_1(\omega) + (1-\omega)\kappa_2(\omega) = \kappa(\omega, 1-\omega) = \lambda(\omega)$$

by homogeneity

Multivariate theory: assumptions

- Assumptions of differentiable κ and smoothness of L do not hold under asymptotic dependence when $\omega=1/2$
- Here,

$$P(X_{P} > n^{1/2}x, Y_{P} > n^{1/2}y \mid X_{P} > n^{1/2}, Y_{P} > n^{1/2})$$

$$\rightarrow \frac{x^{-1} + y^{-1} - V(x, y)}{2 - V(1, 1)}$$

as $n \to \infty$.

• All results can be combined under a generalized notion of multivariate regular variation of the random vector

Back to multivariate regular variation

• Define the bijective map $U_{\omega}:(1,\infty)^2\mapsto (1,\infty)^2$ by

$$U_{\omega}(x,y)=(x^{\omega},y^{1-\omega}),$$

for any fixed $\omega \in (0,1)$

• Assume $\bar{F}_P \circ U_\omega$ is multivariate regularly varying of index $-\lambda(\omega)$

Back to multivariate regular variation

• Define the bijective map $U_{\omega}:(1,\infty)^2\mapsto (1,\infty)^2$ by

$$U_{\omega}(x,y)=(x^{\omega},y^{1-\omega}),$$

for any fixed $\omega \in (0,1)$

- Assume $\bar{F}_P \circ U_\omega$ is multivariate regularly varying of index $-\lambda(\omega)$
- Equivalently: standard multivariate regular variation of the law of the random vector $U^{\leftarrow}_{\omega}(X_P,Y_P)=(X_P^{1/\omega},Y_P^{1/(1-\omega)}),\ \omega\in(0,1)$

$$P\left\{U_{\omega}^{\leftarrow}(X_P,Y_P)/n\in\cdot\mid U_{\omega}^{\leftarrow}(X_P,Y_P)/n\in[1,\infty)^2\right\}\stackrel{w}{\to}\pi^*(\cdot;\omega)$$

• $\pi^*(cB;\omega) = c^{-\lambda(\omega)}\pi^*(B;\omega)$, for Borel $B \subset (1,\infty)^2$, c > 0.

Generalizing the scaling

- In place of conditional probability can generalize the scaling
- ullet We can find $a(n) \in RV_{1/\lambda(\omega)}$ such that for Borel $B \subset (1,\infty)^2$,

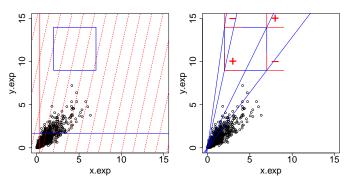
$$\lim_{n\to\infty} n\mathsf{P}\{U_{\omega}^{\leftarrow}(X_P,Y_P)/\mathsf{a}(n)\in B\} = \pi^*(B;\omega)$$

with $\pi^*(\partial B) = 0$ and π^* as previous slide.

- If \bar{H}_{ω} is the survivor function of $\min\{U_{\omega}^{\leftarrow}(X_P,Y_P)\}$ then take $a(n)=(1/\bar{H}_{\omega})^{\leftarrow}(n)$
- For $\omega=1/2$ we recognize this as standard multivariate regular variation; $a(n)\in RV_{1/2\eta}$
- Extension for $\omega \neq 1/2$, under additional assumptions

Multivariate theory: consequences

- In theory multivariate case opens up links between $P(\mathbf{X} \in B)$ and $P(\mathbf{X} \in A)$ for general A, B
- How best to exploit? Which ω ? Depends on shape of set, extrapolation direction, ...?



Links to existing theory

Natural link to the 'all components extreme' approach:

 Assume (a version of) the existing regular variation theory holds for transformed variables

$$(X_P^{1/\omega},Y_P^{1/(1-\omega)})$$
 or equivalently $(X_E/\omega,Y_E/(1-\omega))$

• Univariate regular variation condition:

Ledford & Tawn (1996) :
$$\bar{F}_P(n,n) \in RV_{-1/\eta}$$

Here : $\bar{F}_{P} \circ T_{\omega}(n,n) \in RV_{-\lambda(\omega)}$

Multivariate regular variation condition:

Ledford & Tawn (1997) :
$$\bar{F}_P(nx,ny)$$
 MVRV index $-1/\eta$
Here : $\bar{F}_{P} \circ U_{\omega}(nx,ny)$ MVRV index $-\lambda(\omega)$

Links to existing theory

Ramos and Ledford (2009) explore limits of the type

$$P(X_P > nx, Y_P > ny \mid X_P > n, Y_P > n) \rightarrow g(x, y)(xy)^{-1/2\eta}$$

- There, the focus is on characterization of g(x, y), or equivalently the hidden angular measure H_{η}
- Analogous to characterization of $\pi^*(B; 1/2)$ in

$$\lim_{n\to\infty} n\mathsf{P}\{U_{\omega}^{\leftarrow}(X_P,Y_P)/a(n)\in B\} = \pi^*(B;\omega)$$

for both asymptotically dependent and asymptotically independent possibilities

Links to existing theory

Link to conditional limit theory? A much more modest connection...

$$P(X_P > \beta \log n | Y_P > \log n) = L(n; \beta, 1) \exp\{-[\kappa(\beta, 1) - 1] \log n\}$$

- Some smoothness conditions required as β becomes $\beta(n,x)$
- Limit depends on the behaviour of the SV function $L(n; \omega, 1 \omega)$ as $\omega \to 0$ or $\omega \to 1$
- Full link requires further characterization / assumptions on L

Higher dimensions

• Representation extends to *d*-dimensions: for $\omega \in S_{d-1}$: with $S_{d-1} := \{ \mathbf{v} \in [0,1]^d : \sum_{i=1}^d v_i = 1 \}$

$$\bar{F}_P(n^{\omega_1},\ldots,n^{\omega_d})=L(n;\omega)n^{-\lambda(\omega)},\quad n\to\infty.$$

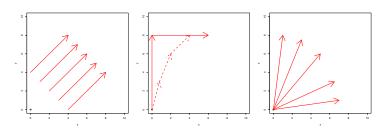
 Complication as always is the number of different orders that can arise with

$$\bar{F}_P(nx_1, nx_2), \ \bar{F}_P(nx_1, nx_3), \ \bar{F}_P(nx_2, nx_3), \ \bar{F}_P(nx_1, nx_2, nx_3), \dots$$

- Ideal: a representation we can estimate in all *d* dimensions, which provides accurate inference for all lower dimensions
- Challenging without simplifying assumptions on asymptotic (in)dependence of different orders

To summarize

- Alternative asymptotic theories lead to different extrapolation directions
- Theory based upon margins growing at different rates offers alternative direction to previous theories



- Simple univariate regular variation condition gives theory for extrapolating joint survivor sets
- Some multivariate theory available with additional assumptions

Thanks for your attention!