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Problem: What is the distribution of peak river flows?

Typically 30-50 years of river flow data but wish is estimate
the level which occurs once on average in 100 years.

Standard Approach (peaks over threshold):

• Select high threshold u

• Identify independent clusters above u

• Focus on modelling only peak value Y per cluster

• Times of peaks occur as a Poisson process

• Peak sizes follow generalised Pareto distribution

Why do this? Is this the best method?



Set-up

• Stationary series {Xt}
• Weak long-range dependence

• Marginal distribution function F

• Upper end point xF

• Assume that there exists φu > 0 such that for x > 0

lim
u→xF

Pr(φu(X − u) > x |X > u) = [1 + ξx ]
−1/ξ
+

where ξ is a shape parameter, y+ = max(y , 0)



Generalised Pareto distribution (GPD)

• For u close to xF , motivates the asymptotic
approximation for x > 0

Pr{(X − u) > x |X > u} =

[
1 +

ξx

σu

]−1/ξ
+

for σu = φ−1u > 0

• For large u

F̄ (x) = pu

[
1 +

ξ(x − u)

σu

]−1/ξ
+

x > u

where pu = Pr(X > u) = F̄ (u)

• GPD tail for X



GPD Extrapolation

For large u and x > 0

Pr(X > x + u) =

(
1 + ξ

x

σu

)−1/ξ
+

Pr(X > u)

We estimate Pr(X > u) empirically and use the formula for
extrapolation

For an exponential tail (σu = 1, ξ = 0) with x > 0

Pr(X > x + u) = exp(−x) Pr(X > u)



Clusters and their Identification

• Exceedances of u by {Xt} occur in clusters: within
cluster dependence, independence between clusters

• Use runs method to identify clusters: cluster
terminates when m − 1 consecutive values below u

• Leads to natural threshold-based extremal index
(reciprocal mean cluster size) for threshold x of

θ(x ,m) = Pr{max(X2, . . . ,Xm) < x | X1 > x}



Issues with dependence in cluster

• Need to account for dependence to derive distribution
of block maximum
eg

Pr(Mn < x) ≈ {F (x)}nθ(x ,m)

where θ(x ,m) is threshold-based extremal index

• Ideal is to remove need to model dependence by
selecting cluster maxima Y



Extremes of daily flows and peak flows

• X daily flow

• Y peak daily flow

lim
u→x∗

Pr{φu(X − u) > x |X > u} = lim
u→x∗

Pr{φu(Y − u) > x |Y > u}

Leadbetter (1991): Limiting asymptotic theory says both
are GPD with the same parameters



For non-limit threshold the two GPDs are different

River Lune at Caton (1979-2006, Winter daily data)
95% threshold: 103 peaks, 251 exceedances, m = 12

Parameter X Y

Scale 72 (60,92) 112 (89,153)
Shape 0.09 (-0.09,0.19) 0.00 (-0.31,0.12)
0.25 Quantile 21 (18,26) 32 (26,43)
0.5 Quantile 51 (44,63) 78 (63,98)
0.9 Quantile 184 (160,207) 257 (213,296)
0.99 Quantile 410 (318,485) 505 (362,618)

Each GPD fit seems fine from usual diagnostics



QQ plot for peaks under all exceedances fitted model
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Limiting asymptotics are not appropriate at selected
threshold
Complication: GPD diagnostics for Y do not pick up a
problem



Link between distributions of X and Y

• X ∼ GPD daily flow

• Y peak daily flow

Rate of exceedance of peaks Pr(Y > u), distribution of size
of peaks:

Pr(Y − u > x |Y > u) =
θ(u + x ,m)

θ(u,m)
Pr(X − u > x |X > u)

where

θ(x ,m) = Pr{max(X2, . . . ,Xm) < x | X1 > x}



WHY? Link between distributions of X and Y

RHS =
θ(u + x ,m)

θ(u,m)
Pr(X − u > x |X > u)

=
R(Y > u + x)

R(X > u + x)

R(X > u)

R(Y > u)

R(X > u + x)

R(X > u)

=
R(Y > u + x)

R(Y > u)

= Pr(Y − u > x |Y > u)

= LHS



Equality of distributions of X and Y

Pr(Y − u > x |Y > u) =
θ(u + x ,m)

θ(u,m)
Pr(X − u > x |X > u)

The distributions of X and Y only agree when
θ(u + x ,m) = θ(u,m) for all x > 0



Empirically estimated θ(x ,m) for Lune data
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Complication: no basis for extrapolation of plot beyond the
data



New modelling strategy

For x > 0

Pr(Y − u > x |Y > u) =
θ(u + x ,m)

θ(u,m)
Pr(X − u > x |X > u)

=
θ(u + x ,m)

θ(u,m)

[
1 +

ξx

σu

]−1/ξ
+

• Use ALL exceedances of u to fit GPD: σu, ξ

• Estimate θ(u + x ,m) for x ≥ 0 using ALL exceedances

• Need model for (X2, . . . ,Xm) | X1 > u for large u



Multivariate Extreme Values: Copulas

Model joint distribution function FX of X = (X1, . . . ,Xm)

FX(x1, . . . , xm) = C{F (x1), . . . ,F (xm)}

where

• F is the marginal distribution function for Xi constant
over i due to stationarity

• C is the copula with uniform margins



Copulas with Gumbel margins

• By suitable transformation X→ S, C could have any
marginal

• We take S = (S1, . . . ,Sm) to have Gumbel marginals

• Now interested in

θ(x ,m) = Pr{max(S2, . . . ,Sm) < t(x) | S1 > t(x)}
=

∑
B∈P(M)

(−1)|B| Pr{Sj > t(x), j ∈ B | S1 > t(x)}

where t(x) is transform involving GPD from X to S and
P(M) is the power set of {2, . . . ,m}



Extremal Dependence

Pair (Si , Sj)
χij = lim

y→∞
Pr(Sj > y | Si > y)

• Asymptotic dependence χij > 0

• Asymptotic independence χij = 0



Multivariate Regular Variation

Assuming a non-degenerate multivariate regular variation on
a Gumbel marginal scale implies for all sets A in tail region

Pr{S ∈ t + A} ≈ exp(−t) Pr{S ∈ A}
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Hidden Regular Variation: Ledford and T. (1997, JRSS B)

Hidden regular variation on a Gumbel marginal scale implies
for all sets A in tail region with ALL components large

Pr{S ∈ t + A} ≈ exp(−t/ηS) Pr{S ∈ A}
where 0 < ηS ≤ 1
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Ledford and Tawn: evaluation of θ(x ,m)

θ(x ,m) = Pr{max(S2, . . . ,Sm) < t(x) | S1 > t(x)}
=

∑
B∈P(M)

(−1)|B| Pr{Sj > t(x), j ∈ B | S1 > t(x)}

≈
∑

B∈P(M)

(−1)|B|kB exp{−t(x)[1/ηB − 1]}

for large x



Asymptotic Dependence: a conditional viewpoint

If all variables are asymptotically dependent on S1 then for
S = (S1,S−1)

lim
v→∞

Pr (S1 − v > s,S−1 − S1 < z|S1 > v) = exp(−s)H(z)

with H non-degenerate and s > 0

If all components of S−1 are asymptotic independent on S1
then H puts all mass at −∞ for each component



Conditional Asymptotics:

Look for functions a and b such that

lim
v→∞

Pr

(
S1 − v > s

S−i − a(S1)

b(S1)
≤ z | S1 > v

)
= exp(−s)G (z)

G is non-degenerate in each margin and s > 0

Note: limiting conditional independence
Applies for asymptotic dependence and asymptotic
independence

Simple forms for a(s) = αs and b(s) = sβ are sufficient in all
theoretical examples



Conditional Method: Heffernan and T. (2004,JRSS B)

Given S1 = s > u

S−1 = αs + sβZ

where Z ∼ G is independent of S1
m − 1-dimensional parameters −1 ≤ α ≤ 1, β < 1 and
additional constraints on (α,β,Z|i )
Estimate G nonparametrically
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Theoretical Examples

S−1 = αS1 + S
β
1 Z

Asymptotic Dependence

α = 1 and β = 0

Asymptotic Independence with Sj (independence)

αj < 1 (αj = 0, βj = 0)

Positive (negative) extremal dependence with Sj

0 < αj < 1 (−1 < αj < 0)

Multivariate Normal Copula

αj = sign(ρ1j)ρ
2
1j and βj =

1

2
for j = 2, . . . ,m



Heffernan and Tawn: evaluation of θ(x ,m)

θ(x ,m) = Pr{max(X2, . . . ,Xm) < x | X1 > x}
= Pr{max(S2, . . . ,Sm) < t(x) | S1 > t(x)}

• Simulate S1|S1 > t(x), Exponential

• Simulate Z independently of S1

• S−1 = αS1 + S
β
1 Z

• Count proportion with max(S2, . . . ,Sm) < t(x)



Model-based estimate of θ(x ,m) for Lune data
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Dashed: Heffernan and Tawn conditional approach (44
parameters)
Dotted: Ledford and Tawn joint tail approach (4094
parameters)



Fit of new distribution for Lune data
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Assess performance using simulation study

Xt marginally Exponential
Dependence 1st order Markov
50 years data

• Process 1 - Gaussian copula

• Process 2 - Inverted BEV copula - logistic

• Process 3 - BEV copula - logistic



Quantiles: relative bias (std dev) (×103)

u = 90% quantile

Excess Quantile POT New LT New HT
0.99 -20 (10) -6 (1) 5 (2)

0.9999 -90 (30) -9 (1) -9 (1)
0.99 -60 (20) -10 (3) -6 (4)

0.9999 -300 (40) -10 (2) -9 (2)
0.99 30 (60) 20 (30) 30 (20)

0.9999 -200 (120) 10 (20) 20 (10)

Efficiency gains at u = 90% : ×10,×20,×10
Efficiency gains at u = 95% : ×2,×10,×10
Efficiency would be much better if no bias in GPD
estimation of X tail



Benefits of new approach: stationary case

• Greater theoretical justification for thresholds used in
practice

• Uses more data, all values in clusters are used

• Improves quantile estimation particularly for long
return periods

• Substantial efficiency gains: reduces both variance and
bias relative to peaks over threshold method
- benefit reduces as threshold increases

• Minimal differences between LT v HT: latter much
easier though

• Extension to other cluster functionals is easy (for HT)



Benefits of new approach: uncertainty of m

POT:

Vary m
new cluster maxima data for each m
re-fit GPD
potential for inconsistencies over m

New Method:

Vary m
Only θ(x ,m) term varies in its evaluation
Model parameters remain same

Pr(Y − u > x |Y > u) =
θ(u + x ,m)

θ(u,m)

[
1 +

ξx

σu

]−1/ξ
+



Benefits of new approach: non-stationary case

Non-stationarity can occur marginally or in dependence
structure:

• POT methods cannot distinguish between these

• New approach captures marginal changes in GPD part
and dependence changes in θ(x ,m)

Pr(Y − u > x |Y > u) =
θ(u + x ,m)

θ(u,m)

[
1 +

ξx

σu

]−1/ξ
+


