Symposium on Recent Advances in Extreme Value Theory Honoring Ross Leadbetter,

Properties of max-stable random fields: conditional distrubutions and strong mixing.

Clément Dombry¹
Joint work with F.Eyi-Minko¹ et M.Ribatet ²

¹Université de Poitiers. ²Université Montpellier 2.

Lisbon, 18-20 March 2013

Structure of the talk

- Introduction
- Conditional distribution of max-stable random fields

3 Strong mixing properties of max-i.d. processes

Motivations

- Needs for modeling spatial extremes in environmental sciences :
 - maximal temperatures in a heat wave,
 - intensity of winds during a storm,
 - water heights in a flood ...
- Spatial extreme value theory geostatistics of extremes :
 - > Schlather ('02), Models for stationary max-stable random fields.
 - ⊳ de Haan & Pereira ('06), Spatial extremes : Models for the stationary case.
 - Davison, Ribatet & Padoan ('11), Statistical modelling of spatial extremes.
- Max-stable random fields play a crucial role as possible limits of normalized pointwise maxima of i.i.d. random fields.

Notion of max-stable random field

Let T be a compact metric space (usually, $T \subset \mathbb{R}^2$). Let $\eta = (\eta(t))_{t \in T}$ be a continuous process on T.

Definition

• η is called <u>max-stable</u> if for all $n \ge 1$, there are continuous functions $a_n(\cdot) > 0$ and $b_n(\cdot)$ such that

$$\left(\frac{\bigvee_{i=1}^{n} \eta_{i}(t) - b_{n}(t)}{a_{n}(t)}\right)_{t \in T} \stackrel{\mathcal{L}}{=} \left(\eta(t)\right)_{t \in T}$$

where η_1, \ldots, η_n are independent copies of η .

• η is called <u>max-i.d.</u> if for all $n \ge 1$, there exists independent continuous processes $(\eta_{i,n})_{1 \le i \le n}$ such that

$$\left(\bigvee_{i=1}^n \eta_{i,n}(t)\right)_{t\in\mathcal{T}} \stackrel{\mathcal{L}}{=} \left(\eta\right)_{t\in\mathcal{T}}.$$

Notion of max-stable random field

- References: Resnick '87, de Haan '84, de Haan & Pickands '86, Giné Hahn & Vatan '90, Resnick & Roy '91, Penrose '92, Schlather '02, de Haan & Ferreira '06, · · ·
- Max-stable processes arrise as weak limit of (normalized) maxima of i.i.d. processes:

If
$$a_n^{-1}(\vee_{i=1}^n X_i - b_n) \Longrightarrow \eta$$
, then η max-stable.

Max-i.d. processes arrise as weak limit of maxima from a triangular array of independent processes:

If
$$a_n^{-1}(\vee_{i=1}^n X_{i,n} - b_n) \Longrightarrow \eta$$
, then η max-i.d.

 Max-stable processes play a central role in functional extreme value theory as Gaussian process in functional statistics.

Structure of the talk

- Introduction
- Conditional distribution of max-stable random fields

3 Strong mixing properties of max-i.d. processes

Motivations

ullet Observations of a max-stable process η at some stations only :

$$\eta(s_i) = y_i, \quad i = 1, \dots, k. \tag{O}$$

How to predict what happens at other locations?

- We are naturally lead to consider the conditional distribution of η given the observations (O).
- Different goals :
 - theoretical formulas for the conditional distribution,
 - sample from the conditional distribution,
 - compute (numerically) the conditional median or quantiles ...
- Results for spectrally discrete max-stable processes :
- New results for max-stable and even max-i.d. processes.

Structure of max-i.d. processes

Theorem (de Haan '84, Giné Hahn & Vatan '90)

For any continuous, max-i.d. random process $\eta=(\eta(t))_{t\in\mathcal{T}}$ satisfying ess inf $\eta(t)\equiv 0$, there exists a unique Borel measure μ on $\mathcal{C}_0=\mathcal{C}(\mathcal{T},[0,+\infty))\setminus\{0\}$ such that

$$\left(\eta(t)\right)_{t\in\mathcal{T}}\stackrel{\mathcal{L}}{=} \left(\bigvee_{\phi\in\Phi}\phi(t)\right)_{t\in\mathcal{T}}, \text{ with }\Phi\sim\operatorname{PPP}(\mu).$$

FIGURE: A realization of Φ and $\eta = \max(\Phi)$ for Smith 1D storm process.

Hitting scenario and extremal functions

- Observations $\{\eta(s_i) = y_i, \ 1 \le i \le k\}$ with $\eta(s) = \bigvee_{\phi \in \Phi} \phi(s)$.
- Assume that the law of $\eta(s_i)$ has no atom, $1 \le i \le k$. Then, with probability 1, $\exists ! \ \phi_i \in \Phi$, $\phi_i(s_i) = \eta(s_i)$.
- Definition of the following random objects:
 - the hitting scenario Θ , a partition of $S = \{s_1, \dots, s_k\}$ with ℓ blocks,
 - the extremal functions $\varphi_1^+, \cdots, \varphi_\ell^+ \in \Phi$,
 - the subextremal functions $\Phi_s^- \subset \Phi$.
- Example with k = 4:

$$\Theta = (\{s_1\}, \{s_2\}, \{s_3, s_4\})$$

$$\Theta = (\{s_1, s_2\}, \{s_3, s_4\})$$

Joint distribution

Let \mathcal{P}_k be the set of partitions of $\{s_1, \dots, s_k\}$. We note $\mathbf{s} = (s_1, \dots, s_k)$.

Theorem

For
$$au = (au_1, \dots, au_\ell) \in \mathcal{P}_k$$
, $A \subset \mathcal{C}_0^\ell$ and $B \subset M_p(\mathcal{C}_0)$ measurable
$$\mathbb{P} \big[\Theta = \tau, \; (\varphi_1^+, \dots, \varphi_\ell^+) \in A, \; \Phi_S^- \in B \big]$$

$$= \int_{\mathbb{C}_0^\ell} \mathbf{1}_{\{\forall j \in [\![1,\ell]\!], \; f_j >_{\tau_j} \lor_{j' \neq j} f_{j'} \}} \mathbf{1}_{\{(f_1, \dots, f_\ell) \in A\}}$$

$$\mathbb{P} \big[\{ \Phi \in B \} \cap \{ \forall \phi \in \Phi, \; \phi <_S \lor_{j=1}^\ell f_j \} \big] \, \mu(df_1) \cdots \mu(df_\ell)$$

Furthermore, the law of $\eta(\mathbf{s})$ is equal to $\nu_{\mathbf{s}} = \sum_{\tau \in \mathcal{P}_k} \nu_{\mathbf{s}}^{\tau}$ with

$$\begin{array}{lcl} \nu_{\mathbf{s}}^{\tau}(d\mathbf{y}) & := & \mathbb{P}[\eta(\mathbf{s}) \in d\mathbf{y}, \; \Theta = \tau] \\ \\ & = & \mathbb{P}[\eta(\mathbf{s}) \leq \mathbf{y}] \bigotimes_{j=1}^{\ell} \mu\big(f(\mathbf{s}_{\tau_{j}^{c}}) < \mathbf{y}_{\tau_{j}^{c}} \,, \; f(\mathbf{s}_{\tau_{j}}) \in d\mathbf{y}_{\tau_{j}}\big). \end{array}$$

Conditional distribution

A three step procedure for the conditional law of η given $\eta(\mathbf{s}) = \mathbf{y}$:

Step 1 : sample Θ from the conditional law w.r.t. $\eta(\mathbf{s}) = \mathbf{y}$.

Conditional distribution

Step 2 : sample (φ_j^+) from the conditional law w.r.t. $\eta(\mathbf{s}) = \mathbf{y}$, $\Theta = \tau$.

Step 3 : sample $\Phi_{\mathbf{s}}^-$ from the conditional law w.r.t. $\eta(\mathbf{s}) = \mathbf{y}$, $\Theta = \tau$, $(\varphi_j^+) = (f_j)$.

Finally, set $\eta(t) = \bigvee_{j=1}^{|\Theta|} \varphi_j^+(t) \bigvee_{\phi \in \Phi_{\mathbf{s}}^-} \phi(t).$

Main theorem

Theorem

Let $\mathbf{s} \in T^k$ and $\mathbf{y} \in (0, +\infty)^k$.

• For all $\tau \in \mathcal{P}_K$,

$$\mathbb{P}[\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{y}] = \frac{d\nu_{\mathbf{s}}^{\tau}}{d\nu_{\mathbf{s}}}(\mathbf{y}).$$

② Conditionally on $\eta(\mathbf{s}) = \mathbf{y}$ and $\Theta = \tau$, the extremal functions $(\varphi_j^+)_{1 \leq j \leq |\tau|}$ are independent and φ_j^+ has distribution

$$\mu(df \mid f(\mathbf{s}_{\tau_j}) = \mathbf{y}_{\tau_j}, f(\mathbf{s}_{\tau_j^c}) < \mathbf{y}_{\tau_j^c}).$$

3 The conditional distribution of $\Phi_{\mathbf{s}}^-$ given $\eta(\mathbf{s}) = \mathbf{y}$, $\Theta = \tau$ and $(\varphi_j^+) = (f_j)$ is a PPP with intensity $\mathbf{1}_{\{f(\mathbf{s}) < \mathbf{y}\}} \mu(\mathbf{d}f)$.

The regular case

The model is called regular at s if

$$\mu(f(\mathbf{s}) \in d\mathbf{y}) = \lambda_{\mathbf{s}}(\mathbf{y}) d\mathbf{y}.$$

For a regular model,

$$\begin{split} \nu_{\mathbf{s}}^{\tau}(d\mathbf{y}) &:= & \mathbb{P}[\eta(\mathbf{s}) \in d\mathbf{y}, \, \Theta = \tau] \\ &= & \mathbb{P}[\eta(\mathbf{s}) \leq \mathbf{y}] \Big(\prod_{j=1}^{|\tau|} \int_{\{\mathbf{u}_j < \mathbf{y}_{\tau_j^c}\}} \lambda_{(\mathbf{s}_{\tau_j}, \mathbf{s}_{\tau_j^c})} (\mathbf{y}_{\tau_j}, \mathbf{u}_j) d\mathbf{u}_j \Big) \, d\mathbf{y}, \\ &\mathbb{P}[\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{y}] = \frac{1}{C(\mathbf{s}, \mathbf{y})} \prod_{j=1}^{|\tau|} \int_{\{\mathbf{u}_j < \mathbf{y}_{\tau_j^c}\}} \lambda_{(\mathbf{s}_{\tau_j}, \mathbf{s}_{\tau_j^c})} (\mathbf{y}_{\tau_j}, \mathbf{u}_j) d\mathbf{u}_j, \\ &\mathbb{P}[\varphi_j^+(\mathbf{t}) \in d\mathbf{z} \mid \eta(\mathbf{s}) = \mathbf{y}, \Theta = \tau] = \frac{1}{C'(\mathbf{s}, \mathbf{y}, \tau)} \Big(\int_{\mathbf{u}_j < \mathbf{y}_{\tau_j^c}} \lambda_{(\mathbf{s}_{\tau_j}, \mathbf{s}_{\tau_j^c}, \mathbf{t})} (\mathbf{y}_{\tau_j}, \mathbf{u}_j, \mathbf{z}) d\mathbf{u}_j \Big) d\mathbf{z}. \end{split}$$

Application to Brown-Resnick processes

A Brown-Resnick process is a 1-Fréchet max-stable process

$$\eta(t) = \bigvee_{i \geq 1} U_i e^{W_i(t) - \gamma(t)/2}$$

with $\{U_i, i \geq 1\} \sim \text{PPP}(u^{-2}du)$ and $(W_i)_{i \geq 1}$ i.i.d. copies of a Gaussian process with stationary increment and variogram γ .

Brown-Resnick processes driven by FBM :

Application to Brown-Resnick processes

• If Var[W(t)] is nonsingular, η is regular at t:

$$\lambda_{\mathbf{t}}(\mathbf{z}) = C_{\mathbf{t}} \exp\left(-\frac{1}{2} \log \mathbf{z}^{T} Q_{\mathbf{t}} \log \mathbf{z} + L_{\mathbf{t}}^{T} \log \mathbf{z}\right) \prod_{i=1}^{k} z_{i}^{-1}$$

with C_t , Q_t , L_t functions of Var[W(t)].

- Conditional sampling :
 - Step 1 : explicit formula for conditional hitting scenario distribution, but for large k combinatorial explosion of the state space \mathcal{P}_k .
 - Step 2 : extremal functions are conditioned log-normal processes.

The conditional hitting scenario distribution

$$\mathbb{P}[\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{y}] = \frac{1}{C(\mathbf{s}, \mathbf{y})} \prod_{j=1}^{|\tau|} \int_{\{\mathbf{u}_j < \mathbf{y}_{\tau_j^c}\}} \lambda_{(\mathbf{s}_{\tau_j}, \mathbf{s}_{\tau_j^c})}(\mathbf{y}_{\tau_j}, \mathbf{u}_j) d\mathbf{u}_j,$$

is of the form

$$\pi(au) = rac{1}{C} \prod_{j=1}^{| au|} \omega_{ au_j}, \quad au = (au_1, \dots, au_\ell)$$

with
$$C = \sum_{\tau \in \mathcal{P}_k} \prod_{j=1}^{|\tau|} \omega_{\tau_j}$$
.

• Combinatorial explosion for large k:

$$\sharp \mathcal{P}_5 = 52, \quad \sharp \mathcal{P}_{10} \approx 1, 16 \cdot 10^5, \quad \sharp \mathcal{P}_{20} \approx 5, 17 \cdot 10^{14}.$$

We cannot evaluate C!!

- Gibbs sampler : irreducible and aperiodic Markov Chain (Θ_n) on \mathcal{P}_k with invariant law π .
- Transition kernel based on the conditional distribution of the partition « with k-1 points frozen » :

$$\mathbb{P}[\Theta_{n+1} = \tau' \mid \Theta_n = \tau] = \sum_{i=1}^k \frac{1}{k} \pi(\tau' \mid \tau'_{-i} = \tau_{-i})$$

and

$$\pi(\tau' \mid \tau'_{-i} = \tau_{-i}) = \begin{cases} \frac{1}{C(\tau,i)} \prod_{j=1}^{|\tau'|} \omega_{\tau'_j} & \text{si } \tau'_{-i} = \tau_{-i} \\ 0 & \text{sinon} \end{cases}.$$

Verification in the Brown-Resnick case with k = 5, $\sharp \mathcal{P}_5 = 52$

Conditional sampling

- Brown-Resnick process driven by FMB (H = 1/4, 1/2 or 3/4).
- Conditional sampling of a path (given k = 5 or 10 conditioning points).
- Conditional median and quantiles of order 0.025 and 0.975 evaluated numerically (confidence interval).

Application

Annual maxima for temperatures in Switzerland at 16 stations :

Particular interest for the heatwave from Summer 2003.

Application

- Max-stable model $\eta(x)$:
 - ▷ Davison & Gholamrezaee ('11), Geostatistics of extremes. Proc. Roy. Soc. A. Marginal distributions

$$\eta(x) \sim \text{GEV}(\gamma(x), \mu(x), \sigma(x))$$
 avec
$$\begin{cases} \gamma(x) = \beta_{0,\gamma} \\ \mu(x) = \beta_{0,\mu} + \beta_{1,\mu} \text{alt}(x) \\ \sigma(x) = \beta_{0,\sigma} + \beta_{1,\sigma} \text{alt}(x) \end{cases}$$
.

Dependance structure of type "extremal Gaussian process" with correlation

$$\rho(x_1,x_2) = \exp\Big[-\Big(\frac{\|x_2-x_1\|}{\lambda}\Big)^{\kappa}\Big].$$

 Model fitted by the "pairwise likelihood method" using annual maxima over the period 1965-2005.

Application

- Conditional sampling with values observed at the 16 stations in 2003.
- Estimation of conditional quantiles (0.025, 0.5, 0.975):

Structure of the talk

- Introduction
- Conditional distribution of max-stable random fields

Strong mixing properties of max-i.d. processes

Motivations

- Statistics of max-stable process based on non i.i.d. observations but rather on stationary weakly dependent observations.
- Recent results for ergodic and mixing properties of stationary max-stable and max-i.d. processes:
 - ⊳ Weintraub ('91) Sample and ergodic properties of some min-stable processes.
 - Stoev ('10) Max-stable processes : representations, ergodic properties and statistical applications.
 - ⊳ Kabluchko & Schlather ('10) Ergodic properties of max-infinitely divisible processes.
- Ergodicity and mixing are important to derive strong law of large numbers but not enough to get central limit theorems.

Motivations

- CLTs for stationary weakly dependent processes are available under strong mixing assumptions.
- We consider here β -mixing (Volkonskii et Rozanov '59) : for random variables X_1, X_2 ,

$$\beta(X_1, X_2) = \|P_{(X_1, X_2)} - P_{X_1} \otimes P_{X_2}\|_{var}.$$

• Consider a continuous max-i.d. process η on a locally compact set T such that

$$\left(\eta(t)\right)_{t\in\mathcal{T}}\stackrel{\mathcal{L}}{=}\left(\bigvee_{\phi\in\Phi}\phi(t)\right)_{t\in\mathcal{T}},\quad \text{with }\Phi\sim\operatorname{PPP}(\mu).$$

with μ the exponent measure on $C_0(T) = C(T, [0, +\infty)) \setminus \{0\}$.

• For disjoint subsets $S_1, S_2 \subset T$, can we get an estimate for

$$\beta(S_1, S_2) = \beta(\eta_{|S_1}, \eta_{|S_2}) \quad ?$$

A natural decomposition of the point process

• For any $\mathcal{S} \subset \mathcal{T}$, $\Phi = \Phi_{\mathcal{S}}^+ \cup \Phi_{\mathcal{S}}^-$ with

$$\begin{array}{lcl} \Phi_{\mathcal{S}}^{+} &=& \{\phi \in \Phi; \; \exists \boldsymbol{s} \in \mathcal{S}, \; \phi(\boldsymbol{s}) = \eta(\boldsymbol{s})\} \\ \Phi_{\mathcal{S}}^{-} &=& \{\phi \in \Phi; \; \forall \boldsymbol{s} \in \mathcal{S}, \; \phi(\boldsymbol{s}) < \eta(\boldsymbol{s})\}. \end{array}$$

FIGURE: Realizations of the decomposition $\Phi = \Phi_S^+ \cup \Phi_S^-$, with S = [0, 5] (left) or $S = \{3\}$ (right).

ullet Clearly for $s\in\mathcal{S},\,\eta(s)=igvee_{\phi\in\Phi_s^+}\phi(s)$ whence

$$\beta(S_1, S_2) \leq \beta(\Phi_{S_1}^+, \Phi_{S_2}^+).$$

A simple upper bound for $\beta(S_1, S_2)$

Theorem

The following upper bound holds true

$$\beta(\mathcal{S}_1,\mathcal{S}_2) \leq 2 \mathbb{P}[\Phi_{\mathcal{S}_1}^+ \cap \Phi_{\mathcal{S}_2}^+ \neq \emptyset] \leq 2 \int_{\mathcal{C}_0} \mathbb{P}[f \not<_{\mathcal{S}_1} \eta, f \not<_{\mathcal{S}_2} \eta] \, \mu(df).$$

In the particular case when η is a 1-Fréchet process,

$$\beta(S_1, S_2) \le 2 [C(S_1) + C(S_2)] [\theta(S_1) + \theta(S_2) - \theta(S_1 \cup S_2)]$$

with $C(S) = \mathbb{E} \big[\sup_{S} \eta^{-1} \big]$ and $\theta(S) = -\log \mathbb{P} \big[\sup_{S} \eta \leq 1 \big]$ the areal coefficient (Coles & Tawn '96).

A CLT for max-stable random fields

Theorem

Let η be stationary simple max-stable on \mathbb{Z}^d and define

$$X(h) = g(\eta(t_1 + h), \ldots, \eta(t_p + h)), \quad h \in \mathbb{Z}^d.$$

Assume that there is $\delta > 0$ such that $\mathbb{E}[X(0)^{2+\delta}] < \infty$ and

$$2-\theta(\eta(0),\eta(h))=o(\|h\|^{-b}) \quad \text{ for some } b>d\max\Big(2,\frac{2+\delta}{\delta}\Big).$$

Then $S_n = \sum_{\|h\| \le n} X(h)$ satisfies the central limit theorem :

$$c_n^{-1/2}\Big(S_n-\mathbb{E}[S_n]\Big)\Longrightarrow \mathcal{N}(0,\sigma^2)$$

with $c_n = \operatorname{card}\{\|h\| \le n\}$ and $\sigma^2 = \sum_{h \in \mathbb{Z}^d} \operatorname{cov}(X(0), X(h))$.

An application

- For a stationary 1-Fréchet random field on \mathbb{Z}^d , the extremal coefficient $\theta(h)$ gives an insight into the dependence structure.
- Recall that

$$\mathbb{P}[\eta(0) \le y, \eta(h_0) \le y] = \exp(-\theta(h_0)/y), \quad y > 0,$$

whence we deduce the naive estimator

$$\hat{\theta}_n^{(1)}(h_0) = -y \log \left(c_n^{-1} \sum_{\|h\| \le n} \mathbf{1}_{\{\eta(h) \le y, \ \eta(h+h_0) \le y\}} \right).$$

• To avoid the arbitrary choice of the arbitrary truncation level y > 0, Smith ('90) uses

$$\mathbb{E}\Big[\min\Big(\frac{1}{\eta(0)},\frac{1}{\eta(h_0)}\Big)\Big] = \frac{1}{\theta(h_0)}$$

and suggests the estimator

$$\hat{\theta}_n^{(2)}(h_0) = \left(c_n^{-1} \sum_{\|h\| \le n} \min\left(\frac{1}{\eta(h)}, \frac{1}{\eta(h+h_0)}\right)\right)^{-1}.$$

An application

 Cooley, Naveau & Poncet ('06) suggest the use of the F-madogram

$$\mathbb{E}[|F(\eta(0)) - F(\eta(h_0))|] = \frac{1}{2} \frac{\theta(h_0) - 1}{\theta(h_0) + 1}$$

with F(y) = exp(-1/y) and the alternative estimator

$$\hat{\theta}_n^{(3)}(h_0) = \frac{1 + 2c_n^{-1} \sum_{\|h\| \le n} |F(\eta(h)) - F(\eta(h+h_0))|}{1 - 2c_n^{-1} \sum_{\|h\| \le n} |F(\eta(h)) - F(\eta(h+h_0))|}.$$

Proposition

Assume that $\theta(h) = 2 + o(\|h\|^{-b})$ for some b > 2d.

Then, the estimators $\hat{\theta}_n^{(i)}(h_0)$ (i=1,2,3) are asymptotically normal:

$$c_n^{-1/2} \Big(\hat{\theta}_n^{(i)}(h_0) - \theta(h_0) \Big) \Longrightarrow \mathcal{N}(0, \sigma_i^2).$$

Références

- C.Dombry, F.Eyi-Minko, Regular conditional distributions of max infinitely divisible processes, Electronic Journal of Probability, Vol 18, 1-21, 2013.
- C.Dombry, F.Eyi-Minko, M.Ribatet, Conditional simulations of max-stable processes, to appear in Biometrika (doi:10.1093/biomet/ass067).
- C.Dombry, F.Eyi-Minko, Strong mixing properties of max-infinitely divisible random fields, Stochastic Process. Appl., Vol 122, No 11, 3790-3811, 2012.